

НАДЕЖНЫЕ СРЕДСТВА И СИСТЕМЫ ТЕХНОЛОГИЧЕСКОГО КОНТРОЛЯ

КАЛИБРАТОРЫ-ИЗМЕРИТЕЛИ УНИФИЦИРОВАННЫХ СИГНАЛОВ ЭТАЛОННЫЕ

ИКСУ-260

Руководство по эксплуатации НКГЖ.408741.003РЭ

СОДЕРЖАНИЕ

1.	Введение	5
2.	Описание и работа	5
	2.1. Назначение изделий	5
	2.2. Технические характеристики	7
	2.3. Устройство и работа	.12
	2.3.1. Общий вид ИКСУ-260	.12
	2.3.2. Элементы индикации и управления ИКСУ-260	.14
	2.3.2.1. Жидко-кристаллический дисплей	14
	2.3.2.2. Назначение кнопок	14
	2.3.3. Назначение разъемов ИКСУ-260	.15
	2.3.4. Назначение кабелей, входящих в комплект поставки ИКСУ-260	.16
	2.3.5. Основные модули ИКСУ-260	.17
	2.3.6. Средства обеспечения взрывозащиты	.18
	2.4. Основные режимы	20
	2.4.1. Режим меню	.21
	2.4.2. Режим измерений	.21
	2.4.3. Режим эмуляции	.21
	2.4.4. Режим симуляции	.22
	2.4.5. Режим поверки ПД	.22
	2.4.6. Режим просмотра архива	.23
	2.5. Работа в режиме меню	24
	2.5.1. Структура меню	24
	2.5.2. Навигация по меню	26
	2.5.3. Ввод чисел с клавиатуры	.26
	2.5.4. Описание пунктов и параметров меню	.28
	2.5.4.1. Подменю «Измерение»	29
	2.5.4.2. Подменю «Эмуляция»	32
	2.5.4.3. Подменю «Симуляция»	34
	2.5.4.4. Подменю «Поверка ПД»	38
	2.5.4.5. Подменю «Архив»	41
	2.5.4.6. Подменю «Настройки»	45
	2.6. Работа в режиме измерений	52
	2.6.1. Вход в режим измерений	.52
	2.6.2. Структура выводимой на дисплей информации в режиме измерений	52
	2.6.3. Порядок работы при измерении сигнала от ТС	.53

2.6.4.	Порядок работы при измерении сигнала от ТП с автоматической компенсацией температуры холодного спая5	4
2.6.5.	Порядок работы при измерении сигнала от ТП при ручной компенсации температуры холодного спая	5
2.6.6.	Порядок работы при измерении сигнала в виде мВ, мА или Ом от внешнего источника	7
2.6.7.	Дополнительные функции в режиме измерений5	9
2	2.6.7.1. Программирование «горячей» кнопки5	9
2	2.6.7.2. Архивирование результатов5	9
2.6.8.	Выход из режима измерений	0
2.7. Раб	ота в режиме эмуляции6	0
2.7.1.	Вход в режим эмуляции	0
2.7.2.	Структура выводимой на дисплей информации в режиме эмуляции6	0
2.7.3.	Порядок работы в режиме эмуляции с воспроизведением сигнала в виде TC или сопротивления постоянному току	1
2.7.4.	Порядок работы в режиме эмуляции с воспроизведением сигнала в виде ТП, мВ или мА6	2
2.7.5.	Дополнительные функции в режиме эмуляции	4
2	2.7.5.1. Программирование «горячей» кнопки6	4
2	2.7.5.2. Архивирование результатов6	5
2	2.7.5.3. Программирование эмулируемых значений в пошаговом режиме6	6
2	2.7.5.4. Программирование эмулируемых значений по 10% делению от заданного диапазона6	7
2.7.6.	Выход из режима эмуляции6	9
2.8. Раб	ота в режиме симуляции7	0
2.8.1.	Вход в режим симуляции7	0
2.8.2.	Структура выводимой на дисплей информации в режиме симуляции7	0
2.8.3.	Порядок работы в режиме симуляции с воспроизведением сигнала в виде ТП, мВ, мА7	1
2.8.4.	Порядок работы в режиме симуляции с воспроизведением сигнала в виде TC, Ом7	3
2.8.5.	Дополнительные функции в режиме симуляции7	5
2.8.6.	Выход из режима симуляции7	5
2.9. Раб	ота в режиме поверки ПД7	6
2.9.1.	Вход в режим поверки ПД7	6
2.9.2.	Структура выводимой на дисплей информации в режиме поверки ПД7	6
2.9.3.	Порядок работы в режиме поверки ПД при поверке датчика давления с унифицированным выходным сигналом в виде силы постоянного тока7	7

2.9.4. Порядок работы в режиме поверки ПД с использованием ПК	79
2.9.5. Архивирование результатов	81
2.9.6. Выход из режима поверки ПД	81
2.10. Работа в режиме просмотра архива	82
2.10.1. Вход в режим просмотра архива	82
2.10.2. Структура архива	82
2.10.3. Структура выводимой на дисплей информации в режиме просмотра архива	82
2.10.4. Просмотр архива	83
2.11. Сообщения об ошибках	84
2.12. Маркировка и пломбирование	84
2.13. Упаковка	85
3. Использование изделия по назначению	86
3.1. Подготовка изделий к использованию	86
3.2. Использование изделия	87
4. Методика поверки	88
5. Техническое обслуживание	98
6. Хранение	99
7. Транспортирование	99
8. Утилизация	99
ПРИЛОЖЕНИЯ:	
А. Схема электрическая соединений кабелей ИКСУ-260Ех	.100
Б. Пример записи обозначения при заказе	.104

ВНИМАНИЕ!

- 1. При длительном хранении калибраторов-измерителей унифицированных сигналов эталонных ИКСУ-260 (далее - ИКСУ-260) (более 1 мес) или полной разрядке аккумулятора перед началом работы аккумуляторы следует зарядить в течение 4,5 ч.
- 2. При работе с ИКСУ-260Ex, выполненным во взрывозащищенном исполнении и имеющим маркировку взрывозащиты 0ExiallAT6 X, соблюдать следующие дополнительные требования безопасности, относящиеся к знаку «Х» в маркировке взрывозащиты:
- эксплуатация ИКСУ-260Ех в режиме работы от внешнего источника (сетевого адаптера) допускается только вне взрывоопасной зоны помещений и наружных установок;
- запрещается производить зарядку и замену аккумуляторной батареи во взрывоопасных зонах;
- первичные преобразователи общего назначения, подключаемые к искробезопасным цепям ИКСУ-260Ех, должны соответствовать требованиям п. 7.3.72 «Правил устройства электроустановок», п. 5.4 ГОСТ Р 51330.10-99;
- при работе с ПК ИКСУ-260Ex и ПК должны быть установлены вне взрывоопасной зоны.

1. ВВЕДЕНИЕ

1.1. Руководство по эксплуатации содержит сведения о конструкции, принципе действия, характеристиках калибраторов-измерителей унифицированных сигналов эталонных ИКСУ-260 и указания, необходимые для правильной и безопасной эксплуатации ИКСУ-260.

2. ОПИСАНИЕ И РАБОТА

2.1. Назначение изделий

2.1.1. ИКСУ-260 предназначены для воспроизведения и измерений электрических сигналов силы и напряжения постоянного тока, сопротивления постоянному току, а также для воспроизведения и измерений сигналов термометров (термопреобразователей сопротивления) (TC) по ГОСТ 6651-2009 и DIN N 43760 и преобразователей термоэлектрических (TП) по ГОСТ Р 8.585-2001 и измерений сигналов преобразователей давления эталонных ПДЭ-010, ПДЭ-010Ex*.

^{*} ПДЭ-010, ПДЭ-010Ex - производства НПП «ЭЛЕМЕР».

2.1.2. ИКСУ-260 используются в качестве эталонного (образцового) средства измерений при поверке рабочих средств измерений, а также в качестве высокоточных рабочих средств измерений при калибровке, поверке и настройке (градуировке) рабочих средств измерений как в лабораторных и промышленных условиях, так и в полевых условиях.

2.1.2.1. ИКСУ-260 при проведении поверки (калибровки и градуировки):

- сравнивает показания эталонного и рабочего средств измерений давления;
- воспроизводит сигналы TC, TП, силы, напряжения постоянного тока или сопротивления постоянному току и измеряет выходной ток преобразователя с унифицированным выходным сигналом;
- обеспечивает сбор, хранение, архивирование и передачу данных в ПК.

2.1.3. В соответствии с ГОСТ 9736-91 ИКСУ-260 являются:

- по числу каналов измерения одноканальными;
- по числу каналов воспроизведения одноканальными;
- по зависимости выходного сигнала от входного (для режима измерений) с линейной зависимостью.

2.1.4. ИКСУ-260 имеют исполнения:

- общепромышленное;
- взрывозащищенное с видом взрывозащиты «искробезопасная электрическая цепь» с добавлением в их шифре индекса «Ex».

2.1.5. По устойчивости к климатическим воздействиям при эксплуатации ИКСУ-260 соответствуют группе исполнения С4 по ГОСТ Р 52931-2008, но при температуре окружающего воздуха от минус 20 до плюс 60 °C.

2.1.6. По защищенности от воздействия окружающей среды ИКСУ-260 выполнены в пылеводозащищенном исполнении. Степень защиты от проникновения пыли и воды IP54 по ГОСТ 14254-96.

2.1.7. Калибраторы-измерители ИКСУ-260Ex с маркировкой взрывозащиты 0ExialIAT6 X выполнены во взрывозащищенном исполнении и имеют особовзрывобезопасный уровень взрывозащиты, обеспечиваемый видом взрывозащиты «искробезопасная электрическая цепь» по ГОСТ Р 51330.10-99. Указанные калибраторыизмерители допускаются для применения во взрывоопасных зонах в соответствии с требованиями главы 7.3 ПУЭ и ГОСТ Р 51330.13-99, включая зоны класса B-1а и B-1г, где возможно образование взрывоопасных смесей, соответствующих категории IIA и группам T1 - T6 включительно. К ним могут подключаться серийные приборы взрывозащищенного исполнения, устанавливаемые во взрывоопасных зонах помещений и наружных установок, имеющие искробезопасные электрические цепи по ГОСТ Р 51330.10-99, удовлетворяющие требованиям главы 7.3 ПУЭ и другим директивным документам, регламентирующим применение электрооборудования во взрывоопасных зонах, а также серийно выпускаемое оборудование общего назначения, соответствующее требованиям п. 7.3.72 ПУЭ.

2.2. Технические характеристики

2.2.1. Диапазоны воспроизведения и измерений, единица последнего разряда, входные параметры (для режима измерений), выходные параметры (для режима воспроизведения) и пределы допускаемых погрешностей воспроизводимых и измеряемых величин относительно HCX с учетом конфигурации ИКСУ-260 приведены в таблицах 2.1 и 2.2.

Таблица 2.1 – ИКСУ-260 для конфигурации с выходными (режим воспроизведения) или входными (режим измерений) электрическими сигналами в виде силы, напряжения постоянного тока и сопротивления постоянному току

димая и из- величина	Диап	азон	Пределы допуск абсолютной (в нормальн при температ	аемой основной погрешности ых условиях уре (20±5) °C)	Пределы допускаемой абсолютной погрешности (в пределах рабочих температур от минус 20 до плюс 60 °C)		
Воспроизво меряемая	воспроизве- дения измерений		воспроизводимых измеряемых величин величин		воспроизводимых величин	измеряемых величин	
1	2	3	4	5	6	7	
ток	025 мА	025 мА	±(10 ⁻⁴ ·I + 1) мкА	±(10 ⁻⁴ ·I + 1) мкА	±(2·10 ⁻⁴ ·I + 2) мкА	±(2·10 ⁻⁴ ·I + 2) мкА	
напряжение	-10100 мВ	-10100 мВ	±(7·10 ⁻⁵ · U + 3) мкВ	±(7·10 ⁻⁵ · U + 3) мкВ	±(14·10 ⁻⁵ · U + 6) мкВ	±(14·10 ⁻⁵ · U + 6) мкВ	
вление	0180 Ом	0320 Ом	±0,015 Ом	±0,01 Ом	±0,025 Ом	±0,02 Ом	
сопроти	180320 Ом	-	±0,025 Ом	-	±0,04 Ом	-	

го ателя		Диапазон		Входные параметры (режим измерений)			тры ий)	Выходные пар (режим воспро ния)	Пределы допускаемой основной абсолютной погрешности (в нормальных условиях при температуре (20±5) °С)		Пределы допускаемой абсолютной погрешности (в пределах			
первичног реобразова	α °C ⁻¹ (W ₁₀₀)	ведения атуры ений атуры		ений атуры сл. разряда		го НСХ		по НСХ			рабочих температур от минус 20 до плюс 60 °C)			
Тип термоп		воспроиз темпер °C	измер темпер °С	Ед. по	сопротивление, Ом	т.э.д.с., мВ	входное сопротив- ление, кОм	сопротивле- ние, Ом	т.э.д.с., мВ	воспро- изводи- мых темпе- ратур, °С	измеря- емых темпе- ратур,°С	воспро- изводи- мых темпе- ратур, °С	измеря- емых темпе- ратур,°С	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	
50M	0,00428	1428 MILLING 50 200 MILLING 50 20	минус 50 200	0,01	39,2392,8			39,2392,8		±0,08	±0,05	±0,15	±0,08	
100M	(1,4280)	Willing 00200	0,01	0,01	78,46185,60			78,46185,60		±0,05	±0,03	±0,08	±0,05	
50M	0,00426	MINUNC 50 200	0,0	0,01	39,3592,6			39,3592,6		±0,08	±0,05	±0,15	±0,08	
100M	(1,4260)	,4260) Минус 50200 Минус 50200 0	0,01	78,7185,2			78,7185,2		±0,05	±0,03	±0,08	±0,05		
50N		минус 200…600	минус 200…600	0,01	8,62158,555	-	-	8,62158,555	-	±0,08	±0,05	±0,15	±0,08	
1000	0,00391 (1,3910) минус 200200		минус 200…600	0,01	17,24317,11				17,24177,04		±0,03	±0,03	±0,05	±0,05
		200600	-	0,01	-			177,04317,11		±0,05	-	±0,08	-	
D+100	0,00385	минус 200…200	минус 200…600	0,01	18,52313,71			18,52175,86		±0,03	±0,03	±0,05	±0,05	
1100	(1,3850)	200600	-	0,01	-			175,86313,71		±0,05	-	±0,08	-	

Таблица 2.2 – ИКСУ-260 для конфигурации с входными (режим измерений) или выходными (режим воспроизведения) электрическими сигналами от ТС по ГОСТ 6651-2009 и ТП по ГОСТ Р 8.585-2001

Продолжение таблицы 2.2

1	2	3	4	5	6	7	8	9	10	11	12	13	14
TXA(K)		минус 2101300	минус 2101300	0,1		-6,03552,410			-6,03552,410	±0,3	±0,3	±0,5	±0,5
TXK(L)		минус 200600	минус 200…600	0,1		-9,48849,108			-9,48849,108	±0,3	±0,3	±0,5	±0,5
ТЖК(Ј)		минус 2001100	минус 2001100	0,1		-7,89063,792			-7,89063,792	±0,3	±0,3	±0,5	±0,5
ΤΠΡ(Β)		3001800	3001800	0,1		0,43113,591			0,43113,591	±2	±2	±2,5	±2,5
TΠΠ(S)	-	01700	01700	0,1	-	0,00017,947	не менее	-	0,00017,947	±1	±1	±2	±2
		01200	01200	0,1		0,00019,150	100		0,00019,150	±2	±2	±3,5	±3,5
IDF(A-I)		12002500	12002500	0,1		19,15033,640			19,15033,64 0	±2,5	±2	±3,5	±3,5
TMK(T)		минус 50…400	минус 50… 400	0,1		-1,81920,872			- 1 819 20 872	±0,3	±0,3	±0,35	±0,35
THH(N)		минус 1101300	минус 1101300	0,1		-2,61247,513			- 2 612 47 51	±0,2	±0,2	±0,25	±0,25

ဖ

2.2.2. Время установления рабочего режима не более 1 мин.

2.2.3. Пределы допускаемой абсолютной погрешности вне диапазона нормальных температур (20 ± 5) °C до любой температуры в пределах рабочих температур от минус 20 до плюс 15 °C и от плюс 25 до плюс 60 °C не превышают значений, установленных в таблицах 2.1 и 2.2.

2.2.4. Предел допускаемой дополнительной погрешности ИКСУ-260 для конфигурации с входными сигналами от ТП, вызванной изменением температуры их свободных концов в диапазоне от минус 20 до плюс 60 °C, не превышает предела допускаемой основной погрешности.

2.2.5. Питание ИКСУ-260 и ИКСУ-260Ex вне взрывоопасной зоны осуществляется от:

- встроенного блока аккумуляторов с напряжением 4,8 В;

- сетевого блока питания (адаптера) с номинальным напряжением 12 В.

2.2.5.1. Питание ИКСУ-260Ex во взрывоопасной зоне осуществляется от искробезопасной цепи встроенного блока аккумуляторов с напряжением 4,8 В.

2.2.5.2. Зарядка блока аккумуляторов осуществляется от сетевого адаптера (для ИКСУ-260Ex - вне взрывоопасной зоны).

2.2.5.3. Потребляемый ток в режиме работы без подсветки и без нагрузки встроенного стабилизатора напряжения не более 300 мА.

2.2.6. Взрывозащищенный калибратор-измеритель ИКСУ-260Ex с маркировкой 0ExialIAT6 X имеет особовзрывобезопасный уровень взрывозащиты «искробезопасная электрическая цепь» уровня «ia» и удовлетворяет требованиям ГОСТ Р 51330.0-99, ГОСТ Р 51330.10-99 для взрывозащищенного оборудования подгруппы IIA и температурного класса T6.

2.2.7. Выходные параметры внешних искробезопасных цепей:

- встроенного стабилизатора напряжения для питания первичных преобразователей с унифицированным выходным сигналом 4...20 мА:

- максимальное выходное напряжение, U ₀	$(24 \pm 0,48)$ B;
- напряжение при токе нагрузки 25 мА	$(24 \pm 0,48)$ B;
- максимальный выходной ток, I ₀	50 мА;
- максимальная выходная мощность, P ₀	0,3 Вт;
- максимальная внешняя емкость, C ₀	0,3 мкФ;
- максимальная внешняя индуктивность, L ₀	10 мГн;

- встроенного стабилизатора напряжения для питания ПДЭ-010 напряжением 5 В:

- максимальное выходное напряжение, U ₀	(5 ± 0,25) B;
- максимальный выходной ток, I ₀	50 мА;
- максимальная выходная мощность, P ₀	0,06 Вт;
- максимальная внешняя емкость, C ₀	0,47 мкФ;
- максимальная внешняя индуктивность, L ₀	5 мГн.

2.2.8. ИКСУ-260 устойчивы к воздействию влажности до 95 % при температуре 35 °С и более низких температурах, без конденсации влаги.

2.2.9. ИКСУ-260 в транспортной таре выдерживают температуру до плюс 60 °С.

2.2.10.ИКСУ-260 в транспортной таре выдерживают температуру до минус 50 °C

2.2.11.ИКСУ-260 в транспортной таре прочны к воздействию воздушной среды с относительной влажностью 98 % при температуре 35 °C.

2.2.12.ИКСУ-260 в транспортной таре прочны к воздействию ударной тряски с числом ударов в минуту 80, средним квадратическим значением ускорения 30 м/с² и продолжительностью воздействия 1 ч.

2.2.13.Габаритные размеры, мм, н	не более:	длина	210;
		ширина	110;
		высота	52.

2.2.14. Масса ИКСУ-260 не более 1 кг.

2.3. Устройство и работа

2.3.1. Общий вид ИКСУ-260

На рисунке 2.1 представлен общий вид прибора ИКСУ-260 во взрывозащищенном исполнении.

Общий вид ИКСУ-260Ех

Рисунок 2.1

Обозначения к рисунку 2.1:

- 1 металлический корпус;
- 2 лицевая панель;
- 3 верхняя панель;
- 4 ЖК дисплей;
- 5 клавиатура;
- 6 нижняя панель.

ИКСУ-260 рассчитан для работы в полевых условиях.

На лицевой панели прибора размещены жидко-кристаллический дисплей и кла-

виатура, на верхней и нижней панелях размещены разъемы.

На рисунках 2.2 и 2.3 представлены соответственно верхняя и нижняя панели ИКСУ-260. На верхней панели ИКСУ-260 расположены:

- разъемы для подключения первичных преобразователей и внешних устройств;
- разъемы RS-232 для подключения к ПК и к ПДЭ-010 посредством кабеля из его комплекта поставки.

На нижней панели ИКСУ-260 расположен разъем для подключения зарядного устройства.

Верхняя панель ИКСУ-260

Рисунок 2.2

Обозначения к рисунку 2.2:

- 1 разъем измерительного входа;
- 2 разъем для подключения реле;
- 3 разъем выхода эмуляции в виде сигнала ТС, Ом;
- 4 разъем выхода эмуляции в виде сигнала ТП, мВ, мА;
- 5 разъем для обмена данными с ПК по интерфейсу RS-232.

Нижняя панель ИКСУ-260

Рисунок 2.3

Обозначения к рисунку 2.3:

1 – разъем для подключения зарядного устройства.

2.3.2. Элементы индикации и управления ИКСУ-260

На панели управления ИКСУ-260 находится ЖК-дисплей и клавиатура с кнопками (см. рисунок 2.1).

2.3.2.1. Жидко-кристаллический дисплей

Жидко-кристаллический дисплей имеет размер 3" и разрешение 128 х 64 пиксе-

лей и предназначен для:

- индикации измеренного и/или воспроизводимого значения физической величины;
- отображения пунктов меню и названий конфигурационных параметров;
- отображения информации о текущем режиме.

Структура информации, отображаемая на дисплее, представлена на рисунке 2.4.

Рисунок 2.4

Обозначения к рисунку 2.4:

- 1 название меню, индикатор заряда аккумулятора или слово «Архив» при архивации или просмотре архива;
- 2 текущее время в формате чч:мм или счетчики кадров и блоков архивированной информации;
- 3 поле для отображения названий пунктов меню, числовой и другой информации;
- 4 поле вывода информации о текущем режиме, типе измеряемого или эмулируемого сигнала;

2.3.2.2. Назначение кнопок

- включение/выключение прибора;
- включение/выключение подсветки дисплея;

– начало/остановка записи в архив;

программирование «горячей» кнопки и других специальных функций
(см. п. 2.7.5), установка заводских значений редактируемых параметров;

переход к следующему запрограммированному значению (шагу) в ре-

жимах эмуляции (воспроизведения) и симуляции (см. п. 2.7.5.3);

2.3.3. Назначение разъемов ИКСУ-260

На рисунках 2.5а-2.5г изображены разъемы ИКСУ-260 и ответных разъемов входящих в комплект поставки кабелей с нумерацией контактов.

Разъемы для измерения сигналов от термоэлектрических преобразователей, мВ, мА, термометров сопротивления, Ом и воспроизведения сигналов от термоэлектрических преобразователей, мВ, мА

Рисунок 2.5а

Разъемы для воспроизведения сигналов от термометров сопротивления, Ом

Разъем для подключения к реле

Разъем для подключения к ПК и обмена данными по интерфейсу RS 232

Рисунок 2.5г

2.3.4. Назначение кабелей, входящих в комплект поставки ИКСУ-260

Ниже перечислены кабели, входящие в комплект поставки ИКСУ:

- кабели №1, 2 с маркировочными бирками «КИ260К» и «КИ260L» предназначены для подключения к ИКСУ ТП типа ТХА и ТХК соответственно при работе в режиме измерения температуры, а также для связи с устройствами в режиме воспроизведения сигналов от указанных типов ТП. В разъеме PLT168-PG кабелей для подсоединения ТП расположен компенсатор температуры холодного спая Pt100;
- кабель №3 с маркировочной биркой «КИ260R1» предназначен для связи ИКСУ с ТС по трехпроводной схеме подключения при работе в режиме измерения температуры и сопротивления постоянному току;
- кабель №4 с маркировочной биркой «КИ260R2» предназначен для связи ИКСУ с устройствами по четырехпроводной, трехпроводной и двухпроводной схеме подключения в режиме воспроизведения сигналов от ТС и сопротивления постоянному току;

- кабель №5 с маркировочной биркой «КИ260U» предназначен для связи ИКСУ с первичными преобразователями или устройствами при работе в режиме измерений напряжения постоянного тока, а также воспроизведения сигналов напряжения постоянного тока;
- кабель №6 с маркировочной биркой «КИ260I2» предназначен для связи ИКСУ с устройствами при работе в режимах измерения и воспроизведения сигналов в виде силы постоянного тока с внутренним блоком питания 24 В;
- кабель №7 с маркировочной биркой «КИ260I1» предназначен для связи ИКСУ с устройствами при работе в режимах измерения и воспроизведения сигналов в виде силы постоянного тока с внешним блоком питания 24 В;
- кабель №8 с маркировочной биркой «КТ» предназначен для связи ИКСУ с устройствами при тестировании реле в режимах *симуляции* и *поверки ПД*;
- модуль интерфейсный МИГР-05U-1 предназначен для связи ИКСУ с ПК.

Схемы электрические соединений кабелей №1...№8 и модуля МИГР-05U-1, входящих в комплект поставки ИКСУ-260, приведены соответственно на рисунках А.1...А.9 Приложения А.

2.3.5. Основные модули ИКСУ-260

ИКСУ-260 состоит из следующих основных модулей:

- блок питания;
- аккумуляторный блок с элементами искрозащиты;
- модуль клавиатуры;
- модуль генерации;
- микропроцессорный блок.

2.3.5.1. Блок питания подключается к сети напряжения 220 В и предназначен для заряда аккумуляторов и питания ИКСУ-260.

2.3.5.2. Аккумуляторный блок с элементами искрозащиты обеспечивает ИКСУ-260 питанием при автономной работе. Встроенные в блок элементы искрозащиты обеспечивают взрывобезопасность ИКСУ-260.

2.3.5.3. Модуль клавиатуры с 22 кнопками предназначен для ввода цифровой информации, навигации по меню, выбора режимов работы ИКСУ-260.

2.3.5.4. Модуль генерации содержит блок импульсного питания, блок управления зарядом аккумуляторов, блок эмуляции и блок защиты питания 24 В от перегрузок. Модуль генерации выполняет следующие функции:

- преобразование напряжения аккумуляторов в постоянные стабилизированные напряжения для питания микропроцессорного модуля, блока эмуляции, встроенного источника питания 24 В;
- управление величиной тока заряда аккумуляторной батареи;
- эмуляция электрических сигналов силы, напряжения постоянного тока и сопротивления постоянному току;

- управление отключением встроенного питания 24 В при перегрузках.

2.3.5.5. Микропроцессорный модуль содержит микроконтроллер с программным обеспечением, таймер реального времени, перепрограммируемое запоминающее устройство, дисплей, звуковой динамик, блок АЦП, блок фильтрации аналоговых сигналов, блок опроса состояний реле.

Микропроцессорный блок выполняет следующие функции:

- управление процессами взаимодействия между модулями ИКСУ-260;
- опрос клавиатуры;
- управление процессом эмуляции сигналов;
- визуализация измеренных и эмулируемых значений, пунктов меню, архивных данных;
- ведение архива измеренных значений, состояний реле;
- опрос состояний реле;
- управление таймером реального времени;
- считывание данных от ПДЭ;
- взаимодействие с ПК;
- воспроизведение звукового сигнала.

2.3.6. Средства обеспечения взрывозащиты

Взрывозащищенность ИКСУ-260Ex обеспечивается конструкцией и схемотехническим исполнением электронной части в соответствии с требованиями ГОСТ Р 51330.10-99. Питание взрывозащищенного ИКСУ-260Ex осуществляется от встроенного искробезопасного источника (аккумуляторной батареи). Электрические узлы ИКСУ-260Ex не содержат элементов, накапливающих энергию, опасную для взрывоопасных смесей подгруппы IIA. Максимальные емкость и индуктивность кабельной линии и первичных преобразователей не должны превышать значений, регламентируемых требованиями ГОСТ Р 51330.10-99 для цепей подгруппы IIA. Максимальные емкость и индуктивность кабеля ПДЭ-010Ex не превышает значений регламентируемых требований ГОСТ Р 51330.10-99 для цепей подгруппы IIA и установленных в п. 2.2.6. Электрическая нагрузка искрозащитных элементов и максимальный нагрев элементов конструкции ИКСУ-260Ex не превышают 2/3 номинального значения и температуры плюс 80 °C соответственно.

При питании взрывозащищенного ИКСУ-260Ex от блока аккумуляторов искробезопасность электронной части измерительного обеспечивается путем:

- ограничения максимального тока встроенными искрозащитными элементами при напряжении аккумуляторной батареи 4,8 В;
- изоляции аккумуляторной батареи от внешней взрывоопасной среды герметизацией заливкой эпоксидным компаундом;
- ограничения емкости конденсаторов и индуктивностей внутренних цепей ИК-СУ-260Ex в соответствии с требованиями ГОСТ Р 51330.10-99;
- обеспечения необходимых электрических зазоров;

- ограничения электрической нагрузки элементов до 2/3^{-их} предельно допустимых эксплуатационных данных.

При изготовлении корпуса применены материалы [сплав алюминия с низким содержанием магния (менее 7,5 %)], обеспечивающие фрикционную искробезопасность.

При эксплуатации взрывозащищенного ИКСУ-260Ex необходимо соблюдать следующие требования (гл. 7.3 ПУЭ, гл. 3.4 ПЭЭП, ГОСТ Р 51330.13-99):

1) эксплуатационный надзор за ИКСУ-260Ex должен производиться лицами, за которыми закреплено данное оборудование, изучившими инструкцию по эксплуатации, аттестованными и допущенными приказом администрации предприятия к работе с ИКСУ-260Ex;

2) запрещается эксплуатация ИКСУ-260Ex с механическими повреждениями корпуса, кабельных разъемов;

3) запрещается эксплуатация ИКСУ-260Ex с поврежденным состоянием компаундной заливки блока аккумуляторов;

4) первичные преобразователи общего назначения должны соответствовать требованиям п. 7.3.72 «Правил технической эксплуатации электроустановок потребителей»;

5) запрещается производить ремонт и регулировку ИКСУ-260Ex во взрывоопасном помещении;

6) запрещается производить зарядку и заменять аккумуляторы во взрывоопасной зоне;

7) при эксплуатации необходимо проводить систематический внешний и профилактический осмотры;

8) устранение дефектов, замена, подключение внешнего кабеля, монтаж и отсоединение первичных преобразователей должны осуществляться при выключенном питании;

9) при подключении кабеля к электронному блоку ИКСУ-260Ex необходимо обеспечить надежное соединение, исключая возможность короткого замыкания жил кабеля.

Знак «Х» в маркировке взрывозащиты ИКСУ-260Ex означает, что при его экс-

плуатации должны выполняться следующие дополнительные условия безопасности:

- эксплуатация ИКСУ-260Ех в режиме работы от внешнего источника (сетевого адаптера) допускается только вне взрывоопасной зоны помещений и наружных установок;
- запрещается производить зарядку и замену аккумуляторной батареи во взрывоопасных зонах;
- первичные преобразователи общего назначения, подключаемые к искробезопасным цепям ИКСУ-260Ех, должны соответствовать требованиям п. 7.3.72 «Правил устройства электроустановок», п. 5.4 ГОСТ Р 51330.10-99;
- ПДЭ-010Ex, подключаемые к искробезопасным цепям разъема RS-232, должны соответствовать требованиям п. 7.3.72 «Правил устройства электроустановок», п. 5.4 ГОСТ Р 51330.10-99;
- при работе с ПК ИКСУ-260Ex и ПК должны быть установлены вне взрывоопасной зоны.

2.4. Основные режимы

ИКСУ-260 может находиться в одном из следующих режимов:

- режим меню (см. п. 2.4.1);
- режим измерений (см. п. 2.4.2);
- *режим эмуляции* (см. п. 2.4.3);
- *режим симуляции* (см. п. 2.4.4);
- *режим поверки ПД* (см. п. 2.4.5);
- режим просмотра архива (см. п. 2.4.6).

Режимы *измерений, эмуляции, симуляции, поверки ПД* и просмотра архива предназначены для выполнения соответствующих функций прибора, первые четыре из них всюду ниже называются также *рабочими* режимами.

Режим меню предназначен для перевода прибора в один из рабочих режимов или *режим просмотра архива* и проведения необходимых предварительных настроек, соответствующих выполняемой функции.

Примечание – При включении прибор автоматически переходит в последний из рабочих режимов (см. рисунок 2.6), в котором он находился перед выключением прибора. Нажатие кнопки « ВАСК » переводит ИКСУ-260 в *Главное меню* (см. п. 2.5.4).

Рисунок 2.6

В другие режимы (редактирование параметров и т.д.) прибор переходит при выполнении отдельных задач, определенных пользователем.

2.4.1. Режим меню

В данном режиме пользователь имеет возможности (см. п. 2.5 «Работа в режиме меню»):

- выбирать режим работы с прибором для осуществления следующих функций: измерение, эмуляция, симуляция, поверка ПД, просмотр архива (см. п. 2.5.4);
- устанавливать тип первичного преобразователя для режимов *измерения*, *эмуляции* и *симуляции* (см. п. 2.5.4);
- устанавливать значения параметров обработки входного сигнала (см. п. 2.5.4.6);
- устанавливать значения параметров преобразования измеренного значения (см. п.п. 2.5.4.3, 2.5.4.4);
- устанавливать значения параметров выходного канала;
- устанавливать текущие время и дату (см. п. 2.5.4.6);
- устанавливать параметры записи в архив (см. п. 2.5.4.5) и др.

Примечание – Порядок работы в режиме меню описан в п. 2.5.

2.4.2. Режим измерений

В данном режиме пользователь имеет возможность проводить высокоточные измерения сигналов от:

- ТП с преобразованием входного сигнала в физическую величину (°С) в соответствии с НСХ выбранного первичного преобразователя;
- ТС с преобразованием входного сигнала в физическую величину (°С) в соответствии с НСХ выбранного первичного преобразователя;
- источника постоянного напряжения, мВ;
- источника постоянного тока, мА;
- сопротивления постоянному току, Ом.

Примечание – Порядок работы в режиме измерений описан в п. 2.6.

2.4.3. Режим эмуляции

Данный режим предназначен для воспроизведения ИКСУ-260 выходного сигнала от источников различного типа, который может быть подан на вход поверяемого измерительного прибора с целью проверки точности проводимых им измерений.

В режиме эмуляции ИКСУ-260 может быть использован для проведения:

- поверки;
- калибровки;
- градуировки и др.

Пользователь имеет возможность выбирать тип генерируемого выходного сигнала в виде:

- ΤΠ;
- TC;
- источника постоянного напряжения, мВ;
- источника постоянного тока, мА;
- сопротивления постоянному току, Ом.

Примечание – Порядок работы в *режиме эмуляции* описан в п. 2.7.

2.4.4. Режим симуляции

Данный режим предназначен для проверки точности работы измерительных преобразователей и других аналогичных приборов и может быть использован для проведения:

- поверки;
- калибровки;
- градуировки и др.

В режиме симуляции ИКСУ-260 генерирует выходной сигнал, имитирующий:

- TΠ;
- TC;
- источник постоянного напряжения, мВ;
- источник постоянного тока, мА;
- сопротивления постоянному току, Ом.

Выходной сигнал от ИКСУ-260 подается на вход испытуемого прибора, на его выходе в результате генерируется унифицированный токовый сигнал, который поступает на измерительный вход ИКСУ-260, преобразуется далее в физическую величину по заданному пользователем линейному закону, и результат выводится на дисплей.

Примечание – Порядок работы в *режиме симуляции* описан в п. 2.8.

2.4.5. Режим поверки ПД

Данный режим предназначен для проведения поверки преобразователей давления (ПД) путем сравнения их показаний с показаниями эталонного преобразователя давления (ЭПД). Результаты измерений от поверяемого и эталонного преобразователей давления выводятся на дисплей ИКСУ.

Примечание – Порядок работы в *режиме поверки ПД* описан в п. 2.9.

2.4.6. Режим просмотра архива

Данный режим предназначен для просмотра записей, сделанных пользователем в режимах измерений, симуляции, эмуляции и поверки ПД.

Примечание – Порядок работы в *режиме просмотра архива* описан в п. 2.10.

2.5. Работа в режиме меню

2.5.1. Структура меню

Меню прибора имеет иерархическую структуру, состоящую из меню различных уровней. Каждое меню представляет собой список пунктов или параметров.

На рисунке 2.7 приведена общая структура меню ИКСУ.

Структура меню

Структура меню (продолжение)

Рисунок 2.7

2.5.2. Навигация по меню

Навигация по меню осуществляется с помощью следующих кнопок клавиатуры

Кнопки « >» и « >» используются для выбора нужного пункта из вертикально расположенных пунктов меню путем перемещения селектора меню – горизонтальной полоски темного цвета.

Примечание – На дисплее прибора всегда отображается не более пяти пунктов из полного списка пунктов текущего меню. Для того, чтобы выбрать пункт меню, расположенный в нижней части списка и **неотображенный** на дисплее, необходимо переместить селектор меню в нижнюю часть отображенного списка и нажать кнопку « >» один (см. рисунок 2.8) или несколько раз. Аналогично, для того, чтобы выбрать пункт меню, расположенный в верхней части списка и **неотображенный** на дисплее, чтобы выбрать пункт меню, расположенный в верхней части списка и неотображенный на дисплее, необходимо переместить селектор меню в верхнюю часть отображенный на дисплее, необходимо переместить селектор меню в верхнюю часть отображенного списка и нажать кнопку « >» требуемое количество раз.

Рисунок 2.8

Кнопка « еме » используется для:

- подтверждения выбранного пункта меню с последующим входом в меню следующего уровня (подменю) или в один из режимов работы прибора;
- ввода результатов редактирования параметра в память прибора.

Кнопка « васк » используется для:

- возврата на предыдущий уровень меню;
- *выхода* из рабочего режима прибора в *режим меню* (с одновременной остановкой записи в архив);
- выхода из режима просмотра архива в режим меню;
- отмены редактирования или ввода параметров.

2.5.3. Ввод чисел с клавиатуры

В некоторых диалоговых окнах меню, а также в режимах эмуляции и симуляции возникает необходимость ввода значений числовых параметров.

Все числовые параметры прибора представлены в формате с фиксированной запятой, либо в формате целого числа. Количество индицируемых знаков после запятой не превышает определяемого параметром **«Точность»** количества. Редакти-

рование чисел осуществляется с помощью кнопок цифровой клавиатуры «

« 9 », « – », а также кнопок « , « , « , « enter », и « васк ».

Нажатие одной из кнопок « , , , , « , p » приводит к модификации редактируемого числа, состоящей из двух последовательных действий:

1) сдвиг числа влево на один разряд;

2) запись цифры, соответствующей нажатой кнопке, в младший разряд.

П р и м е ч а н и е – Если результат модификации целого числа приводит к выходу числа за границу допустимого диапазона параметра, то редактируемое число остается без изменения.

Нажатие кнопки «——)» приводит к изменению знака числа (только для параметров, принимающих отрицательные значения).

Нажатие кнопки « (« >») приводит к увеличению (уменьшению) редактируемого числа на одну единицу последнего разряда в режимах *эмуляции* и *симуляции*. Удерживание любой из кнопок в нажатом состоянии приводит к соответствующему изменению числа в режиме автоповтора. Режим автоповтора может быть «быстрым» или «медленным». Переключение между «быстрым» и «медленным» режима-

FAS

ми автоповтора осуществляется нажатием кнопки « stow ». В случае если установлен «быстрый» режим автоповтора, то в левом верхнем углу дисплея высвечивается символ « ► ► ► » (см. рисунок 2.9).

По умолчанию установлен «медленный» режим автоповтора.

Рисунок 2.9

Нажатие кнопки « приводит к модификации редактируемого числа, состоящей из двух последовательных действий:

1) удаление цифры младшего разряда;

2) сдвиг числа вправо на один разряд.

Нажатие кнопки « """ » записывает новое значение параметра в энергонезависимую память прибора и актуализирует его (в режимах *эмуляции и симуляции* эмулируемое значение запоминается в оперативную память).

Нажатие кнопки « ^{васк} » отменяет сделанные изменения в значении параметра, оставляя редактируемый параметр без изменений, и осуществляет возврат на предыдущий уровень меню или выход из текущего режима.

2.5.4. Описание пунктов и параметров меню

В качестве меню верхнего уровня ИКСУ-260 выступает *Главное меню,* представленное на рисунке 2.10.

Меню	17:1	7
Измерение		
Эмуляция		
Симуляция		
Поверка ПД		
Архив		

Рисунок 2.10

Главное меню содержит следующие пункты:

- «Измерение»;
- «Эмуляция»;
- «Симуляция»;
- «Поверка ПД»;
- «Архив»;
- «Настройки».

Пользователь выбирает один из пунктов *Главного меню* в зависимости от режима, в котором предполагается работать с прибором.

Для перехода в режим измерений необходимо выбрать пункт «Измерение»,

нажать кнопку « » и далее осуществить все необходимые установки, выбирая соответствующие пункты в появляющихся диалоговых окнах.

Для перехода в *режим эмуляции* необходимо выбрать пункт «Эмуляция», нажать кнопку « enter » и далее осуществить все необходимые установки, выбирая соответствующие пункты в появляющихся диалоговых окнах.

Для перехода в *режим симуляции* необходимо выбрать пункт «Симуляция», нажать кнопку « enter » и далее осуществить все необходимые установки, выбирая соответствующие пункты в появляющихся диалоговых окнах.

П р и м е ч а н и е – Непосредственный переход к одному из рабочих режимов с заранее выполненными установками может быть осуществлен также с помощью «горячей» кнопки, запрограммированной пользователем в соответствующем рабочем режиме (см. п. 2.6.7.1).

Для перехода в *режим поверки ПД* необходимо выбрать пункт «Поверка ПД», нажать кнопку « Inter » и далее осуществить все необходимые установки, выбирая соответствующие пункты в появляющихся диалоговых окнах.

Для перехода в *режим просмотра архива* необходимо выбрать пункт «Архив», нажать кнопку « ENTER » и далее войти в пункт «Просмотр архива».

Для выполнения настроек, связанных с архивацией данных, необходимо выбрать пункт «Архив», нажать кнопку « • и далее, в подменю *Архив* выполнить необходимые настройки.

Для установки других параметров прибора («Усреднение», «Точность», «Время», «Дата»), а также для включения/выключения встроенных функций («Тест реле», «Звук», «Контраст», «Автовыключение»), необходимо выбрать пункт «Настройки», нажать кнопку «^{ENTER}» и далее выбрать соответствующий пункт в подменю *Настройки*.

2.5.4.1. Подменю Измерение

Выбор в *Главном меню* пункта «Измерение» и нажатие кнопки « ^{емтер} » приводит к появлению на дисплее прибора подменю *Измерение*, содержащим следующие пункты:

- «TC»;
- «ТП»;
- «Милливольты»;
- «Миллиамперы»;
- «Ом».

Вид меню, отображаемого на дисплее, представлен на рисунке 2.11

Рисунок 2.11

В подменю *Измерение* пользователь выбирает (см. п. 2.5.2 «Навигация по меню») пункт, соответствующий источнику, сигнал от которого предстоит измерять с помощью прибора.

Выбор пункта «TC» с последующим нажатием кнопки « • » приводит к появлению на дисплее прибора подменю *TC*, содержащим следующий список термопреобразователей сопротивления:

- «Pt100 IEC(385)»;
- «100П (Рус)»;
- «50П (Рус)»;
- «50M (1,428)»;
- «50M (1,426)»;
- «100M (1,428)»;
- «100M (1,426)».

Из этого списка необходимо выбрать тип TC, с которым предполагается рабо-

тать. Выбор типа TC и нажатие кнопки « емереводит прибор в *режим измерений* (см. п. 2.6) соответственно выбранному типу датчика.

Выбор пункта «ТП» с последующим нажатием кнопки « » приводит к появлению на дисплее прибора подменю *ТП*, содержащим следующий список преобразователей термоэлектрических:

- «ТЖК Ј»;
- «TXA K»;
- «ТПР В»;
- «TBP A1»;
- «ТПП S»;
- «TXK L»;
- «TMK T»;
- «THH N».

Из этого списка необходимо выбрать тип ТП, с которым предполагается работать. Выбор типа ТП и нажатие кнопки « ENTER » переводит прибор в подменю Ком*пенс.* (см. рисунок 2.12), в котором пользователю предлагается выбрать тип компенсации холодного спая из двух следующих пунктов:

- «Автоматическая»;
- «Ручная».

При подключении к ИКСУ-260 одного из кабелей №1 или №2 из прилагаемого комплекта, в разъем которого встроен компенсатор холодного спая Рt100, необходимо выбрать пункт «Автоматическая». В этом случае компенсация холодного спая в процессе измерений будет осуществляться прибором автоматически. Если кабели №1, №2 не используются, то необходимо выбрать пункт «Ручная», затем произвести измерение температуры холодного спая с погрешностью, не превышающей предела допускаемой основной погрешности для данного типа ТП, и ввести измеренное значение *t*₀ в качестве параметра (см. п. 2.6.5).

Выбор в меню *Компенс*. пункта «Автоматическая» и нажатие кнопки « переводит прибор в *режим измерения* сигнала от выбранного типа датчика с учетом автоматической компенсации.

Если выбирается пункт «Ручная», то пользователю предлагается ввести значение температуры в нижней части экрана (см. рисунок 2.12), используя клавиатуру прибора.

Рисунок 2.12

В случае успешного ввода прибор переходит в *режим измерения* выбранного типа датчика с учетом указанного значения температуры холодного спая.

Примечание – Заводская установка температуры холодного спая: 0.0°С.

Выбор пункта «Милливольты», «Миллиамперы» или «Ом» с последующим нажатием кнопки « ^{ENTER} », переводит прибор в *режим измерения* сигнала от внешне-го источника соответственно выбранному пункту в меню *Измерение*.

2.5.4.2. Подменю «Эмуляция»

Выбор в *Главном меню* пункта «Эмуляция» и нажатие кнопки «^{емтек}» приводит к

появлению на дисплее прибора подменю Эмуляция, содержащим следующие пункты:

- «TC»;
- «ТП»;
- «Милливольты»;
- «Миллиамперы»;
- «Ом».

Вид меню, отображаемого на дисплее, представлен на рисунке 2.13

Рисунок 2.13

В подменю Эмуляция пользователь выбирает пункт, соответствующий источнику, сигнал которого предстоит эмулировать с помощью прибора.

Выбор пункта «TC» с последующим нажатием « ртег» приводит к появлению на дисплее прибора подменю *TC*, содержащим следующий список термопреобразователей сопротивления:

- «Pt100 IEC(385)»;
- «100П (Рус)»;
- «50П (Рус)»;
- «50M (1,428)»;
- «50M (1,426)»;
- «100M (1,428)»;
- «100M (1,426)».

Выбор из этого списка типа TC и нажатие кнопки « • » переводит прибор в *режим эмуляции* (см. п. 2.6) соответственно выбранному типу датчика.

Выбор пункта «ТП» с последующим нажатием кнопки « """ » приводит к появлению на дисплее прибора подменю *ТП*, содержащим следующий список термоэлектрических преобразователей:

- «ТЖК Ј»;
- «TXA K»;
- «ТПР В»;
- «TBP A1»;

- «ТПП S»;
- «TXK L»;
- «TMK T»;
- «THH (N)».

Выбор из этого списка типа ТП и нажатие кнопки « • » переводит прибор в подменю *Компенс.*, в котором пользователю предлагается выбрать тип компенсации холодного спая из двух следующих пунктов:

- «Автоматическая»;
- «Ручная».

При подключении к ИКСУ-260 одного из кабелей №1 или №2 из прилагаемого комплекта, в разъем которого встроен компенсатор холодного спая Рt100, необходимо выбрать пункт «Автоматическая». В этом случае компенсация холодного спая в процессе измерений будет осуществляться прибором автоматически. Если кабели №1, №2 не используются, то необходимо выбрать пункт «Ручная», затем произвести измерение температуры холодного спая с погрешностью, не превышающей предела допускаемой основной погрешности для данного типа ТП, и ввести измеренное значение *t*₀ в качестве параметра (см. п. 2.6.5).

Выбор в меню *Компенс*. пункта «Автоматическая» и нажатие кнопки « переводит прибор в *режим эмуляции* сигнала от выбранного типа датчика с учетом автоматической компенсации.

Если выбирается пункт «Ручная», то пользователю предлагается ввести значение температуры холодного спая (в нижней части экрана см. рисунок 2.12), используя клавиатуру прибора.

В случае успешного ввода параметра прибор переходит в *режим эмуляции* выбранного типа датчика с учетом указанного значения температуры холодного спая.

Выбор пункта «милливольты», «миллиамперы» или «Омы» с последующим нажатием кнопки « [INTER]», переводит прибор в *режим эмуляции* сигнала от источника соответственно выбранному пункту меню.

33

2.5.4.3. Подменю «Симуляция»

Выбор в Главном меню пункта «Симуляция» и нажатие кнопки « ENTER » приво-

дит к появлению на дисплее прибора подменю Симуляция, содержащим следующие пункты:

- «TC»;
- «ТП»;
- «Милливольты»;
- «Миллиамперы»;
- «Ом».

Вид меню, отображаемого на дисплее, представлен на рисунке 2.14

Рисунок 2.14

В подменю Симуляция пользователь выбирает пункт, соответствующий источ-

нику, сигнал от которого предстоит эмулировать с помощью прибора.

Выбор пункта «TC» с последующим нажатием кнопки « • » приводит к появлению на дисплее прибора подменю *TC*, содержащим следующий список термопреобразователей сопротивления:

- «Pt100 IEC(385)»;
- «100П (Рус)»;
- «50П (Рус)»;
- «50M (1,428)»;
- «50M (1,426)»;
- «100M (1,428)»;
- «100M (1,426)».

Выбор из этого списка типа TC и нажатие кнопки « вызывает на экран дисплея диалоговое окно, содержащее два пункта:

- «0-5 мА»;
- «4-20 мА».

Вид диалогового окна представлен на рисунке 2.15.

Рисунок 2.15

В данном диалоговом окне пользователь выбирает тип выходного унифицированного токового сигнала, в который испытуемый прибор преобразует сигнал, поступивший от ИКСУ-260Ex.

Выбор типа выходного унифицированного токового сигнала и нажатие кнопки « ENTER » вызывает на экран дисплея диалоговое окно следующего вида:

Рисунок 2.16

В данном диалоговом окне пользователь имеет возможность получить информацию об установленных значениях параметров **A**_e и **A**_H – соответственно верхнем и нижнем пределах диапазона преобразования входного унифицированного сигнала – и, при необходимости, произвести их редактирование.

Значение редактируемого параметра высвечивается в мигающем режиме. Редактирование производится с помощью кнопок цифровой клавиатуры прибора (см. п. 2.5.3). Нажатие кнопки «¬» («)») переключает режим редактирования с **A**_e на **A**_H (с **A**_H на **A**_e).

При входе в данное диалоговое окно пользователю предоставляется возможность начать редактирование с параметра **A**_e, установленное значение которого высвечивается в режиме мигания.

Примечание – Заводская установка $A_e = 0.00^{\circ}$ С и $A_{H} = 0.00^{\circ}$ С.

Нажатие кнопки « » актуализирует введенные значения **A**_в и **A**_н, записывает их в память прибора и переводит его в *режим симуляции* (см. п. 2.7) соответственно выбранному типу датчика. Выбор в подменю *Симуляция* пункта «ТП» с последующим нажатием кнопки « ENTER » приводит к появлению на дисплее прибора подменю *ТП*, содержащим следующий список преобразователей термоэлектрических:

- «ТЖК Ј»;
- «ТХА К»;
- «ТПР В»;
- «TBP A1»;
- «ТПП S»;
- «TXK L»;
- «TMK T»;
- «THH N».

Из этого списка необходимо выбрать тип ТП, сигнал от которого предполагается имитировать. Выбор типа ТП и нажатие кнопки « ENTER » переводит прибор в диалоговое окно *Компенс.*, в котором пользователю предлагается выбрать тип компенсации холодного спая из двух следующих пунктов:

- «Автоматическая»;
- «Ручная».

При подключении к ИКСУ-260 одного из кабелей №1 или №2 из прилагаемого комплекта, в разъем которого встроен компенсатор холодного спая Рt100, необходимо выбрать пункт «Автоматическая». В этом случае компенсация холодного спая в процессе измерений будет осуществляться прибором автоматически. Если кабели №1, №2 не используются, то необходимо выбрать пункт «Ручная», затем произвести измерение температуры холодного спая с погрешностью, не превышающей предела допускаемой основной погрешности для данного типа ТП, и ввести измеренное значение *t*₀ в качестве параметра (см. п. 2.6.5).

Выбор в диалоговом окне *Компенс.* пункта «Автоматическая» и нажатие кнопки « ENTER » вызывает на экран дисплея подменю следующего уровня, содержащее два пункта:

- «0-5 мА»;
- «4-20 мА».

Вид подменю представлен на рисунке 2.15 (см. выше).

В данном подменю пользователь выбирает тип выходного унифицированного токового сигнала, в который испытуемый прибор преобразует сигнал, поступивший от ИКСУ-260.
Выбор типа выходного унифицированного токового сигнала и нажатие кнопки « ENTER » вызывает на экран дисплея диалоговое окно, представленное на рисунке 2.16 (см. выше).

В данном диалоговом окне пользователь имеет возможность получить информацию об установленных значениях параметров **A**_e и **A**_H – соответственно верхнем и нижнем пределах диапазона преобразования входного унифицированного сигнала – и, при необходимости, произвести их редактирование.

Значение редактируемого параметра высвечивается в мигающем режиме. Редактирование производится с помощью кнопок цифровой клавиатуры прибора (см. п. 2.5.3). Нажатие кнопки « >» (« >») переключает режим редактирования с A_{g} на A_{H} (с A_{H} на A_{g}).

При входе в данное диалоговое окно пользователю предоставляется возможность начать редактирование с параметра **A**₆, установленное значение которого высвечивается в режиме мигания.

Примечание – Заводская установка $A_e = 0.00^{\circ}$ С и $A_{H} = 0.00^{\circ}$ С.

Нажатие кнопки « » актуализирует введенные значения **A**_e и **A**_h, записывает их в память прибора и переводит ИКСУ-260 в *режим симуляции* (см. п. 2.7) соответственно выбранному типу датчика.

В случае выбора в диалоговом окне *Компенс.* пункта «Ручная» пользователю предлагается ввести значение температуры компенсации холодного спая (в нижней части экрана см. рисунок 2.12), используя клавиатуру прибора.

В случае успешного ввода после нажатия кнопки « • » на экране дисплея высветится подменю с пунктами:

- «0-5 мА»;
- «4-20 мА».

Вид подменю представлен на рисунке 2.15 (см. выше).

В данном подменю пользователь выбирает тип выходного унифицированного токового сигнала, в который испытуемый прибор преобразует сигнал, поступивший от ИКСУ-260Ex. Выбор типа выходного унифицированного токового сигнала и нажатие кнопки « вызывает на экран дисплея диалоговое окно, представленное на рисунке 2.16 (см. выше).

В данном диалоговом окне пользователь имеет возможность получить информацию об установленных значениях параметров **A**_e и **A**_H – соответственно верхнем и нижнем пределах диапазона преобразования входного унифицированного сигнала – и, при необходимости, произвести их редактирование.

Значение редактируемого параметра высвечивается в мигающем режиме. Редактирование производится с помощью кнопок цифровой клавиатуры прибора (см. п. 2.5.3). Нажатие кнопки «▼» («▲») переключает режим редактирования с *A*_e на *A*_H (с *A*_H на *A*_e).

При входе в данное диалоговое окно пользователю предоставляется возможность начать редактирование с параметра **A**₆, установленное значение которого высвечивается в режиме мигания.

Примечание – Заводская установка $A_e = 0.00^{\circ}$ С и $A_{H} = 0.00^{\circ}$ С.

Нажатие кнопки « » актуализирует введенные значения **A**_e и **A**_h, записывает их в память прибора и переводит его в *режим симуляции* (см. п. 2.7) соответственно выбранному типу датчика.

2.5.4.4. Подменю «Поверка ПД»

Выбор в *Главном меню* пункта «Поверка ПД» и нажатие кнопки « в » приводит к появлению на дисплее прибора подменю *Поверка ПД*, относящимся к поверяемому датчику давления и содержащим следующие пункты:

- «Электронный ПД»;
- «Механический ПД».

Вид меню, отображаемого на дисплее, представлен на рисунке 2.17

Рисунок 2.17

При наличии у поверяемого датчика давления встроенного электронного преобразователя давления в выходной унифицированный токовый сигнал следует выбрать пункт «Электронный ПД». При отсутствии у поверяемого датчика давления встроенного электронного преобразователя давления (датчик имеет собственный индикатора давления, например, манометр) следует выбрать пункт «Механический ПД».

Выбор требуемого пункта меню и нажатие кнопки « •••••• » приводит к появлению на дисплее прибора подменю выбора единиц измерения давления для эталонного датчика, состоящего из пунктов:

- кПа;

- MПА.

Вид меню, отображаемого на дисплее, представлен на рисунке 2.18

Поверка ПД	19:12
кПа	
МПа	
Эталонный	датчик

Рисунок 2.18

Если в предыдущем меню был выбран пункт «Механический ПД», то выбор надлежащей единицы измерений эталонного датчика в данном меню и нажатие

кнопки « ентег » переводит прибор в *режим поверки ПД* (см. п. 2.9).

Если в предыдущем меню был выбран пункт «Электронный ПД», то после выбора надлежащей единицы измерений эталонного датчика в данном меню и нажатия

кнопки « на дисплее прибора выводится меню выбора единиц измерения для поверяемого датчика, которое содержит следующие пункты:

- «кПа»;
- «МПА»;
- «кгс/см2»;
- «кгс/м2»;
- «мм.рт.ст.»;
- «Bar»;
- «Psi».

Вид меню, отображаемого на дисплее, представлен на рисунке 2.19

Рисунок 2.19

Выбор единиц измерения для поверяемого датчика и нажатие кнопки « вызывает на экран дисплея подменю следующего уровня (см. рисунок 2.20), содержащее два пункта:

- «0-5 мА»;
- «4-20 мА».

Рисунок 2.20

В данном подменю пользователь выбирает тип выходного унифицированного токового сигнала, который используется на выходе поверяемого ПД.

Выбор типа выходного унифицированного токового сигнала и нажатие кнопки « ENTER » вызывает на экран дисплея диалоговое окно следующего вида:

Рисунок 2.21

В данном диалоговом окне пользователь имеет возможность получить информацию об установленных значениях параметров *P*_e и *P*_H – верхнем и нижнем пределах диапазона преобразования входного унифицированного сигнала соответственно – и, при необходимости, произвести их редактирование.

Редактирование производится с помощью кнопок цифровой клавиатуры прибора (см. п. 2.5.3). Нажатие кнопки « («) переключает режим редактирования с P_{e} на P_{μ} (с P_{μ} на P_{e}), при этом значение редактируемого параметра высвечивается в мигающем режиме.

При входе в данное диалоговое окно пользователю предоставляется возможность начать редактирование с параметра **P**₆, установленное значение которого высвечивается в мигающем режиме.

Примечание – Заводская установка: **Р**_в = 0.00 кПа и **Р**_н = 0.00 кПа.

Нажатие кнопки « » актуализирует введенные значения **Р**_в и **Р**_н, записывает их в память прибора и переводит его в *режим поверки ПД* (см. п. 2.9).

Примечание – В случае ввода значения **Р**_в ≤ **Р**_н, на экране прибора выводится сообщение об ошибке (см. рисунок 2.22)

Поверка ПД	10:19	
Значение выхолит		
за пределы		
допустимого!		

Рисунок 2.22

и пользователю снова предлагается ввести значениях параметров *P*_в и *P*_н в диалоговом окне, представленном на рисунке 2.21.

2.5.4.5. Подменю «Архив»

Выбор в *Главном меню* пункта «Архив» и нажатие кнопки « ^{емтер} » приводит к появлению на дисплее прибора подменю *Архив*, представленном на рисунке 2.23 и содержащем следующие пункты:

- «Просмотр архива»;
- «Станд. объекты»;
- «Польз. объекты»;
- «Период записи»;
- «Зав. номер датч.»;
- «Твнешней среды»;
- «Удаление архива».

Рисунок 2.23

Выбор в подменю *Архив* пункта «Просмотр архива» и нажатие кнопки « переводит прибор в *режим просмотра архива* (см. п. 2.10), где пользователь может просмотреть записи результатов, выполненных в рабочих режимах прибора.

Пункт «Станд. объекты» предназначен для выбора названия объекта, на котором (с которым) предполагается работать в одном из рабочих режимов прибора.

Выбор пункта «Станд. объекты» и нажатие кнопки « ENTER » вызывает на дисплей прибора диалоговое окно *Объекты*, содержащее следующий список наименований стандартных объектов:

- «ОБСТ_0»;
- «ОБСТ_1»;
- «ОБСТ_2»;
- «ОБСТ_3»;
- «ОБСТ_4»;
- «ОБСТ_5»;
- «ОБСТ_6»;
- «ОБСТ_7»;
- «ОБСТ_8»;
- «ОБСТ_9».

Выбор нужного пункта и нажатие кнопки « в риводит к запоминанию выбранного названия объекта в память прибора и возвращает прибор в подменю *Архив*.

Примечание – Название выбранного объекта отображается в записях при архивировании в одном из рабочих режимов.

Пункт «Польз. объекты» предназначен для выбора названия объекта (из списка названий, созданных пользователем и записанных в прибор с помощью специальной программы), на котором (с которым) предполагается работать в одном из рабочих режимов прибора.

Выбор пункта «Польз. объекты» и нажатие кнопки « Выбор пункта «Польз. объекты» и нажатие кнопки « вызывает на дисплей прибора диалоговое окно *Объекты*, содержащее созданный пользователем с помощью программы «АРМ ИКСУ260.exe» (входит в комплект поставки ИКСУ) список наименований объектов. Например:

- «База»;
- «ТРУБА»;
- «Hacoc1»;
- «Hacoc2»;
- «Бочка».

Выбор нужного пункта и нажатие кнопки « в риводит к запоминанию выбранного названия объекта в память прибора и возвращает прибор в подменю *Архив*.

Примечание – Название выбранного объекта отображается в записях при архивировании в одном из рабочих режимов.

Пункт «Период записи» предназначен для просмотра текущего и/или задания нового значения параметра **«Период записи»** – периода архивации данных во встроенную энергонезависимую память ИКСУ-260, т.е. время между двумя последовательными записями в архив, которые предполагается осуществлять в одном из рабочих режимов прибора.

Выбор пункта «Период записи» и нажатие кнопки « ENTER » вызывает на дисплей прибора диалоговое окно (см. рисунок 2.24), в котором пользователю предлагается ввести значение параметра **«Период записи»** в секундах.

Архив	12:45
Период Введите [0255]:	записи значение 0

Рисунок 2.24

Возможные значения: 0...255;

Заводская установка: 0 – запись одного кадра по нажатию кнопки «

Ввод требуемого значения возвращает прибор в подменю *Архив* с актуализированным новым значением данного параметра.

Нажатие кнопки « Р устанавливает заводское значение данного парамет-

ра (для актуализации необходимо подтверждение нажатием кнопки « enter »).

Нажатие кнопки « возвращает прибор в подменю *Архив* с актуализированным прежним значением данного параметра.

Пункт «Зав. номер датч.» предназначен для просмотра текущего и/или задания нового значения параметра **«Зав. номер датч.»** – заводского номера испытуемого (поверяемого) датчика при записи в архив, которую предполагается осуществлять в одном из рабочих режимов прибора.

Выбор пункта «Зав. номер датч.» и нажатие кнопки « •••••• » вызывает на дисплей прибора диалоговое окно (см. рисунок 2.25), в котором пользователю предлагается ввести значение параметра **«Зав. номер датч.»**.

Рисунок 2.25

Возможные значения: 0...65535;

Заводская установка: 0 – эквивалентна отсутствию установленного значения номера датчика.

Ввод требуемого значения возвращает прибор в подменю *Архив* с актуализированным новым значением данного параметра.

Нажатие кнопки « возвращает прибор в подменю *Архив* с актуализированным прежним значением данного параметра.

Пункт «Твнешней среды» предназначен для просмотра текущего и/или задания нового значения параметра **«Твнешней среды»** – температуры внешней среды, при которой предполагается осуществлять записи в одном из рабочих режимов прибора.

Выбор пункта «Твнешней среды» и нажатие кнопки « ENTER » вызывает на дисплей прибора диалоговое окно (см. рисунок 2.26), в котором пользователю предлагается ввести значение параметра **«Твнешней среды»**.

Рисунок 2.26

Возможные значения: -128...127;

Заводская установка: 0.

Ввод требуемого значения возвращает прибор в подменю *Архив* с актуализированным новым значением данного параметра.

Нажатие кнопки « Progr » устанавливает заводское значение данного парамет-

ра (для актуализации необходимо подтверждение нажатием кнопки « ^{Шег}»).

Нажатие кнопки « возвращает прибор в подменю *Архив* с актуализированным прежним значением данного параметра.

Пункт «Удаление архива» предназначен для удаления всех записей, имеющихся в архиве.

Выбор пункта «Удаление архива» и нажатие кнопки « ^{емтек}» запускает процесс удаления **без дополнительного подтверждения**.

Нажатие кнопки « возвращает прибор в подменю *Архив*, удаленные данные при этом теряются без возможности восстановления.

Нажатие кнопки « васк » после завершения процедуры удаления архива возвращает прибор в подменю *Архив*.

Внимание! Удаленные из архива данные не подлежат восстановлению.

2.5.4.6. Подменю «Настройки»

Выбор в *Главном меню* пункта «Настройки» и нажатие кнопки « ^{мтер}» приводит к появлению на дисплее прибора подменю *Настройки*, представленном на рисунке 2.27 и содержащем следующие пункты:

- «Усреднение»;
- «Точность»;
- «Тест реле»;

- «Время»;
- «Дата»;
- «Звук»;
- «Контраст»;
- «Автовыключение»;
- «О приборе».

Рисунок 2.27

Пункт «Усреднение» предназначен для просмотра текущего и/или задания нового значения параметра **«Усреднение»** – количества измерений, используемых для усреднения входного сигнала, поступающих на измерительный вход прибора.

Выбор пункта «Усреднение» и нажатие кнопки « ^{ентег}» вызывает на дисплей прибора диалоговое окно *Усреднение* (см. рисунок 2.28), в котором пользователю предлагается ввести значение параметра **«Усреднение»**.

Рисунок 2.28

Возможные значения: 1...100;

Заводская установка: 10.

П р и м е ч а н и е – Данный параметр используется для сглаживания (демпфирования) выбросов при измерениях. Время одного цикла измерений составляет 0,4 с.

Ввод требуемого значения возвращает прибор в подменю Настройки с актуализированным новым значением данного параметра.

Нажатие кнопки « возвращает прибор в подменю *Настройки* с актуализированным прежним значением данного параметра. Пункт «Точность» предназначен для просмотра текущего и/или задания нового значения параметра **«Точность»** – максимальное количество знаков после запятой, выводимых на дисплей прибора или вводимых с клавиатуры в одном из рабочих режимов.

Выбор пункта «Точность» и нажатие кнопки « вызывает на дисплей прибора диалоговое окно *Точность* (см. рисунок 2.29), в котором пользователю предлагается ввести значение параметра **«Точность»**.

Точность	13:47
Введите знач [14]:	ение 3

Рисунок 2.29

Возможные значения: 0...4;

Заводская установка: 3.

Ввод требуемого значения возвращает прибор в подменю Настройки с актуализированным новым значением данного параметра.

Нажатие кнопки « устанавливает заводское значение данного параметра (для актуализации необходимо подтверждение нажатием кнопки « »).

Нажатие кнопки « возвращает прибор в подменю *Настройки* с актуализированным прежним значением данного параметра.

Пункт «Тест реле» предназначен для включения/выключения функции тестирования реле в режимах поверки ПД и симуляции.

Выбор пункта «Тест реле» и нажатие кнопки « ^{емтек}» вызывает на дисплей прибора диалоговое окно *Тест реле* (см. рисунок 2.30), в котором пользователю предлагается включить или выключить функцию тестирования реле.

Рисунок 2.30 47

Выбор пункта «Включить» («Выключить») и нажатие кнопки « етте » включает (выключает) функцию тестирования реле и возвращает прибор в подменю *Настройки*.

Нажатие кнопки « возвращает прибор в подменю Настройки без какихлибо изменений.

Пункт «Время» предназначен для установки нового текущего значения времени.

Выбор пункта «Время» и нажатие кнопки « Вызывает на дисплей прибора диалоговое окно *Время* (см. рисунок 2.31), в котором пользователю предлагается произвести редактирование текущего значения времени, представленного в формате: «**чч:мм:cc**».

Время 14:27	
14 : 27 : 23	

Рисунок 2.31

Значения часов («чч»), минут («мм») и секунд («сс») редактируются отдельно. Редактируемая часть выделена инверсным цветом. Нажатия кнопки «▼» («▲») осуществляют переключения между редактируемыми частями в последовательности «чч» – > «мм» – > «сс» – > «чч»...(«чч» – > «сс» – > «мм» – > «чч»...). Изменение редактируемой части производится с помощью кнопок цифровой клавиатуры, а также с помощью кнопки «

Нажатие кнопки « етте » актуализирует введенное значение времени и возвращает прибор в подменю *Настройки*.

Нажатие кнопки « устанавливает заводское значение данного парамет-

ра (для актуализации необходимо подтверждение нажатием кнопки « Enter »).

Нажатие кнопки « возвращает прибор в подменю *Настройки*, не меняя ранее установленного значения времени.

Пункт «Дата» предназначен для просмотра и/или установки новой текущей даты.

48

Выбор пункта «Дата» и нажатие кнопки « Выбор пункта «Дата» и нажатие кнопки « вызывает на дисплей прибора диалоговое окно *Дата* (см. рисунок 2.32), в котором пользователю предлагается произвести редактирование текущей даты, представленной в формате: «дд:мм:гггг».

Рисунок 2.32

Значения дня («дд»), месяца («мм») и года («гггг») редактируются отдельно. Редактируемая часть выделена инверсным цветом. Нажатия кнопки «▼» («▲») осуществляют переключения между редактируемыми частями в последовательности «дд» – > «мм» – > «гггг» – > «дд»...(«дд» – > «мм» – > «гггг» – > «дд»...). Изменение редактируемой части производится с помощью кнопок цифровой клавиату-

ры, а также с помощью кнопки «

Нажатие кнопки « етте » актуализирует введенное значение даты и возвращает прибор в подменю Настройки.

Нажатие кнопки « устанавливает заводское значение данного парамет-

ра (для актуализации необходимо подтверждение нажатием кнопки « ENTER »).

Нажатие кнопки « возвращает прибор в подменю *Настройки*, не меняя ранее установленной даты.

Пункт «Звук» предназначен для включения/выключения звукового оповещения в *режиме поверки ПД*. При включенном звуковом оповещении в *режиме поверки ПД* раздается звуковой сигнал при достижении измеренного значения давления величины 75 % от *P*_e – верхнего предела диапазона преобразования входного унифицированного сигнала.

Выбор пункта «Звук» и нажатие кнопки « вызывает на дисплей прибора диалоговое окно *Звук* (см. рисунок 2.33), в котором пользователю предлагается включить (выключить) звуковое оповещение, выбрав пункт.

Рисунок 2.33

Выбор пункта «Включить» («Выключить») и нажатие кнопки « включает (выключает) звуковое оповещение и возвращает прибор в подменю *Настройки*.

При установке значения «Включен» раздается тестовый звуковой сигнал.

Заводская установка: «Включен».

Нажатие кнопки « возвращает прибор в подменю *Настройки* без какихлибо изменений.

Пункт «Контраст» предназначен для изменения контрастности дисплея прибора.

Выбор пункта «Контраст» и нажатие кнопки « ^{емтер}» вызывает на дисплей прибора диалоговое окно *Контраст* (см. рисунок 2.34), в котором пользователю предлагается изменить контрастность дисплея, нажатиями кнопки « >» или «)».

Контраст	17:51
Нажмите	клавишу
'Вверх ил	и Вниз′
ДЛЯ И	зменения
коптраста	экрапа

Рисунок 2.34

Выбор нужной контрастности и нажатие кнопки « в актуализирует новое значение контрастности дисплея и возвращает прибор в подменю *Настройки*.

Нажатие кнопки « возвращает прибор в подменю *Настройки* с прежней контрастностью дисплея.

Пункт «Автовыключение» предназначен для включения/выключения функции автоматического выключения прибора. При включенной функции прибор автоматически выключается через 15 минут после последнего нажатия какой-либо из кнопок.

Выбор пункта «Автовыключение» и нажатие кнопки « вызывает на дисплей прибора диалоговое окно *Автовыключение* (см. рисунок 2.35), в котором пользователю предлагается включить (выключить) функцию автовыключения.

Рисунок 2.35

Выбор пункта «Включить» («Выключить) и нажатие кнопки « включает) (выключает) функцию автовыключения и возвращает прибор в подменю *Настройки*.

Нажатие кнопки « возвращает прибор в подменю *Настройки* без какихлибо изменений.

Пункт «О приборе» предназначен для получения информации о версии микропрограммного обеспечения (firmware) прибора.

Выбор пункта «О приборе» и нажатие кнопки « ^{ентер}» вызывает на дисплей прибора диалоговое окно *О приборе* (см. рисунок 2.36), в котором пользователю предоставляется информация о версии микропрограммного обеспечения прибора и дате ее изготовления.

О приборе 17:57	
MKCY260Ex SW 1.2 * PCB 1.3 WRD: Jan 11 2008 www.elemer.ru	
Нажмите <back></back>	

Рисунок 2.36

Нажатие кнопки « возвращает прибор в подменю *Настройки*.

2.6. Работа в режиме измерений

2.6.1. Вход в режим измерений

Вход в режим измерений может быть осуществлен одним из трех способов:

- 1) из Главного меню путем выбора пункта «Измерение» (см. п. 2.5.4.1);
- при включении прибора (если перед выключением прибора последним из рабочих режимов был *режим измерений*);
- 3) из *Главного меню* путем нажатия заранее запрограммированной «горячей» кнопки «1»...«6» (см. п. 2.6.7.1).

2.6.2. Структура выводимой на дисплей информации в режиме измерений

При входе в *режим измерений* на дисплее ИКСУ-260 отображается результат текущего измерения от внешнего источника входного сигнала, тип которого устанавливается в предшествующих диалоговых окнах. Пример экрана дисплея с описанием структуры отображаемой информации изображен на рисунке 2.37.

Рисунок 2.37

Обозначения к рисунку 2.37:

- 1 название режима;
- 2 измеренное значение;
- 3 единицы измерения;
- 4 информация о типе измеряемого сигнала (НСХ, мВ, мА, Ом).

2.6.3. Порядок работы при измерении сигнала от ТС

- Выключить прибор, нажав кнопку « 2005 »;
- собрать схему, изображенную на рисунке 2.38, подключив разъем PLT168-PG кабеля №3, входящего в комплект поставки, с соответствующим разъемом «измерение» прибора, а другой конец этого кабеля – с TC;

Измерение сигнала от ТС

Рисунок 2.38

- включить прибор, нажав кнопку « Усте»;
- нажать кнопку « васк » для входа в *Главное меню*;

- в *Главном меню* войти в пункт «Измерение», затем выбрать «TC» и нажать кнопку «^{ENTER}»;

Примечание – Нажатие заранее запрограммированной «горячей» кнопки в *Главном меню* переводит ИКСУ непосредственно в *режим измерений*.

- выбрать из представленного списка требуемый тип TC, например, «100М

(1,428)» и нажать кнопку « ENTER ».

В результате прибор перейдет в режим измерений сигналов от TC выбранного типа (см. рисунок 2.38).

2.6.4. Порядок работы при измерении сигнала от ТП с автоматической компенсацией температуры холодного спая

- Выключить прибор, нажав кнопку « Жег »;
- собрать схему, изображенную на рисунке 2.39, подключив разъем PLT168-PG входящего в комплект поставки кабеля №1 (при измерении сигнала от ТП типа ТХА) или кабеля №2 (при измерении сигнала от ТП типа ТХК) с соответствующим разъемом «измерение» прибора, а другой конец этого кабеля – с ТП;

Примечания

1 При измерении сигналов от ТП других типов с автоматической компенсацией температуры холодного спая используются кабели, поставляемые по специальному заказу.

2 В примере, изображенном на рисунке 2.39, используется кабель №1 для измерения сигнала от ТП типа ТХА.

- включить прибор, нажав кнопку « ^{Ссер}»;
- нажать кнопку « васк » для входа в Главное меню;
- в *Главном меню* войти в пункт «Измерение», затем выбрать «ТП» и нажать кнопку «^{ENTER}»;
- выбрать из представленного списка требуемый тип ТП, например, «ТХА К» и нажать кнопку « ENTER »;
- выбрать пункт «Автоматическая» и нажать кнопку « Enter ».

В результате прибор перейдет в режим измерений сигналов от ТП выбранного типа (см. рисунок 2.39).

Примечание – Нажатие заранее запрограммированной «горячей» кнопки в *Главном меню* переводит ИКСУ непосредственно в *режим измерений*.

Измерение сигнала от ТП с автоматической компенсацией

температуры холодного спая

Рисунок 2.39

2.6.5. Порядок работы при измерении сигнала от ТП при ручной компенсации температуры холодного спая

- Выключить прибор, нажав кнопку «
- собрать схему, изображенную на рисунке 2.40, осуществив необходимые соединения с помощью кабеля №5, входящего в комплект поставки;
- включить прибор, нажав кнопку « 76FF »;
- нажать кнопку « васк » для входа в Главное меню;

Измерение сигнала от ТП с ручной компенсацией температуры холодного спая

Рисунок 2.40

- в *Главном меню* войти в пункт «Измерение», затем выбрать «ТП» и нажать кнопку «^{ENTER}»;
- выбрать из представленного списка требуемый тип ТП, например, «ТХА (К)» и нажать кнопку « [INTER »;

- выбрать пункт «Ручная» (в нижней части экрана высветится текущее значение температуры холодного спая);
- измерить с помощью вспомогательного прибора температуру холодного спая;
- ввести измеренное значение температуры холодного спая с помощью циф-

ровой клавиатуры ИКСУ и нажать кнопку « ENTER ».

В результате ИКСУ перейдет в режим измерений сигналов от ТП выбранного типа (см. рисунок 2.40).

Примечание – Нажатие заранее запрограммированной «горячей» кнопки (см. п. 2.6.7.1) в *Главном меню* переводит ИКСУ непосредственно в *режим измерений*.

2.6.6. Порядок работы при измерении сигнала в виде напряжения (мВ) и силы (мА) постоянного тока или сопротивления постоянному току (Ом) от внешнего источника

- Выключить прибор, нажав кнопку « Согг »;
- собрать схему, изображенную на рисунке 2.41, подключив разъем PLT168-PG входящего в комплект поставки кабеля №6 или №7 (при измерении мА), или №5 (при измерении мВ), или №3 (при измерении Ом) с соответствующим разъемом «измерение» ИКСУ, а другой конец этого кабеля – с источником сигнала;

П р и м е ч а н и е – В примере, изображенном на рисунке 2.41, используется кабель №6 для измерения сигнала в виде мА.

- включить прибор, нажав кнопку «
- нажать кнопку « васк » для входа в Главное меню;
- в *Главном меню* войти в пункт «Измерение», затем из раскрывшегося списка выбрать требуемый пункт («Милливольты», «Миллиамперы» или «Ом») и нажать кнопку « [INTER »;

В результате прибор перейдет в режим измерений сигнала выбранного типа (см. рисунок 2.41).

Примечание – Нажатие заранее запрограммированной «горячей» кнопки (см. п. 2.6.7.1) в *Главном меню* переводит ИКСУ непосредственно в *режим измерений*.

Измерение сигнала в виде напряжения (мВ), силы (мА) постоянного тока и сопротивления постоянному току (Ом) от внешнего источника

Рисунок 2.41

2.6.7. Дополнительные функции в режиме измерений

В данном пункте описываются дополнительные возможности, предоставляемые пользователю в *режиме измерений*.

2.6.7.1. Программирование «горячей» кнопки

Для быстрого входа из *Главного меню* в данный режим с заданными установками пользователю предоставлена возможность программирования «горячей» кнопки.

Чтобы запрограммировать «горячую» кнопку необходимо в текущем режиме измерений нажать кнопку « Progr ». На дисплее прибора высветится диалоговое окно *Программа*, представленное на рисунке 2.42.

Программа	17:07
Задайте программ Клавишами	номер ^{1ы} 16

Рисунок 2.42

Нажатие одной из кнопок « , , , , « . , , в риведет к установке ее в качестве «горячей» кнопки для данного рабочего режима, после чего прибор возвратится в *режим измерений*.

Нажатие кнопки « возврату прибора в *режим измерений* без перепрограммирования «горячей» кнопки.

2.6.7.2. Архивирование результатов

Нажатие кнопки « *в режиме измерений* включает архивацию (значение параметра «**Период записи**» больше 0), при этом в верхней строке дисплея появля-

ется надпись «Архив». Повторное нажатие кнопки « сес » останавливает архивацию.

Все необходимые настройки для архивирования выполняются в пункте *Главного меню* «Архив» (см. п. 2.5.4.5).

Примечание – Если значение параметра «**Период записи**» установлено равным 0, то при нажатии кнопки « в архив записывается только один кадр, надпись «Архив» при этом на дисплей не выводится.

2.6.8. Выход из режима измерений

Нажатие кнопки « выводит прибор из *режима измерений* в *режим меню* (см. рисунок 2.7) с одновременной остановкой записи в архив (если она была включена).

2.7. Работа в режиме эмуляции

2.7.1. Вход в режим эмуляции

Вход в режим эмуляции может быть осуществлен одним из трех способов:

- 1) из Главного меню путем выбора пункта «Эмуляция» (см. п. 2.5.4.2);
- при включении прибора (если перед выключением прибора последним из рабочих режимов был *режим эмуляции*);

2.7.2. Структура выводимой на дисплей информации в режиме эмуляции

При входе в *режим эмуляции* на дисплее ИКСУ отображается значение эмулируемого сигнала, равное 0.0.

Пользователь набирает с клавиатуры значение эмулируемого сигнала (в момент набора в нижней части экрана высвечивается слово «Установка») и нажимает

кнопку « ENTER ». В результате в нижней части экрана высвечивается слово «Эмуляция», и на выходе прибора воспроизводится индицируемое значение сигнала.

Пример экрана дисплея с описанием структуры отображаемой информации изображен на рисунке 2.43.

Рисунок 2.43

Обозначения к рисунку 2.43:

- название режима (во время ввода значения эмулируемого сигнала здесь высвечивается «Установка»);
- 2 эмулируемое значение;
- 3 вычисленное значение силы тока на измерительном входе;
- 4 единицы измерения эмулируемого значения;
- 5 информация об источнике эмулируемого сигнала.
- 2.7.3. Порядок работы в режиме эмуляции с воспроизведением сигнала в виде ТС

или сопротивления постоянному току

Воспроизведение сигнала в виде ТС или сопротивления постоянному току

Рисунок 2.44

- Выключить прибор, нажав кнопку «
- собрать схему, изображенную на рисунке 2.44, подключив разъем PLT164-PG кабеля №4, входящего в комплект поставки, с соответствующим разъемом «эмуляция» прибора, а другой конец этого кабеля – со входом поверяемого измерительного прибора;
- включить прибор, нажав кнопку «
- нажать кнопку « васк » для входа в Главное меню;
- в *Главном меню* войти в пункт «Эмуляция», затем из раскрывшегося списка выбрать требуемый пункт («TC» или «Ом») и нажать кнопку « ENTER »;
- в случае выбора пункта «TC» необходимо выбрать из раскрывающегося списка тип TC, например, «Pt100 IEC(385)» (см. рисунок 2.44) и нажать кнопку « ENTER »:
- ввести эмулируемое значение с помощью клавиатуры прибора (в течение ввода в нижней части экрана высвечивается слово «Установка»);
- нажать кнопку « »; в результате на выходе прибора будет сгенерирован сигнал заданной величины (в нижней части экрана высвечивается слово «Эмуляция»).

Примечание – Нажатие заранее запрограммированной «горячей» кнопки (см. п. 2.7.5.1) в *Главном меню* переводит ИКСУ непосредственно в *режим эмуляции*.

2.7.4. Порядок работы в режиме эмуляции с воспроизведением сигнала в виде TП, мВ или мА

- Выключить прибор, нажав кнопку « / OFF »;
- собрать схему, изображенную на рисунке 2.45, подключив разъем PLT168-PG входящего в комплект поставки кабеля: №1 (при эмуляции сигнала в виде TП типа TXA с автоматической компенсацией температуры холодного спая), или №2 (при эмуляции сигнала в виде TП типа TXK с автоматической компенсацией температуры холодного спая), или №5 (при эмуляции сигнала в виде MB или в виде TП с ручной компенсацией температуры холодного спая), или №5 (при эмуляции сигнала в виде MB или в виде TП с ручной компенсацией температуры холодного спая), или №5 (при эмуляции сигнала в виде мВ или в виде TП с ручной компенсацией температуры холодного спая), или №6 или №7 (при эмуляции сигнала в виде мА) с соответствующим разъемом «эмуляция» ИКСУ, а другой конец этого кабеля со входом поверяемого измерительного прибора;

П р и м е ч а н и е – При измерении сигналов от ТП других типов с автоматической компенсацией температуры холодного спая используются кабели, поставляемые по специальному заказу.

- включить прибор, нажав кнопку « У »;
- нажать кнопку « васк » для входа в *Главное меню*;
- в Главном меню войти в пункт «Эмуляция», затем из раскрывшегося списка выбрать требуемый пункт, например, «Милливольты» (см. рисунок 2.45), и

нажать кнопку « ENTER »;

- в случае выбора пункта «ТП» выполнить действия, описанные в п.п. 2.6.4(при автоматической компенсации холодного спая), 2.6.5 (при ручной компенсации холодного спая);
- ввести эмулируемое значение с помощью клавиатуры прибора (в течение ввода в нижней части экрана высвечивается слово «Установка»);
- нажать кнопку « »; в результате на выходе прибора будет сгенерирован сигнал заданной величины (в нижней части экрана высвечивается слово «Эмуляция»).

Воспроизведение сигнала в виде ТП, мВ или мА

Рисунок 2.45

2.7.5. Дополнительные функции в режиме эмуляции

В данном пункте описываются дополнительные возможности, предоставляемые пользователю в *режиме эмуляции*.

2.7.5.1. Программирование «горячей» кнопки

Для быстрого входа из *Главного меню* в данный режим с установленными текущими параметрами пользователю предоставлена возможность программирования «горячей» кнопки. Чтобы запрограммировать «горячую» кнопку необходимо в текущем *режиме эмуляции* нажать кнопку «^{Progr}». На дисплее прибора высветится диалоговое окно *Программа*, представленное на рисунке 2.46.

Рисунок 2.46

Далее, необходимо подтвердить выбранный пункт «Для клавиши», нажав кнопку « ENTER ».

Рисунок 2.47

В открывшемся диалоговом окне (см. рисунок 2.47) нажатие одной из кнопок «1»,..., «6)» приведет к установке ее в качестве «горячей» кнопки для данного режима, после чего прибор возвратится в *режим эмуляции*.

Нажатие кнопки « возврату в *режим эмуляции* без перепрограммирования «горячей» кнопки.

2.7.5.2. Архивирование результатов

Нажатие кнопки « включает архивацию (значение параметра «Период записи» больше 0), при этом в верхней строке дисплея появляется надпись «Архив».

Повторное нажатие кнопки « С » останавливает архивацию.

Все необходимые настройки для архивирования выполняются в пункте *Главного меню* «Архив» (см. п. 2.5.4.5). Примечание – Если значение параметра **«Период записи»** установлено равным 0, то при нажатии кнопки « в архив записывается только один кадр, надпись «Архив» при этом на дисплей не выводится.

2.7.5.3. Программирование эмулируемых значений в пошаговом режиме

Нажатие кнопки « Р выбор в открывшемся диалоговом окне пункта «Пошаговая» (с последующим подтверждением), вызовет на дисплей прибора диалоговое окно *Пошаговая*, представленное на рисунке 2.48

Рисунок 2.48

Нажатие кнопки « Васк » приведет к возврату в режим эмуляции.

Выбор пункта «По шагам» и нажатие кнопки « етте » вызовет следующее диалоговое окно

Пошаговая	11:42
Количество [26]:	шагов 3

Рисунок 2.49

В данном диалоговом окне необходимо ввести требуемое количество N эмулируемых значений (шагов), которые в *режиме эмуляции* будут меняться при нажатии кнопки «^{FIXED}/_{STEPS}» или в автоматическом режиме по времени.

Ввод нужного количества эмулируемых значений (шагов) вызывает последовательность из такого же количества диалоговых окон, в которых пользователь должен ввести эмулируемые значения, соответствующие номерам шагов. Ввод N-го эмулируемого значения возвращает прибор в *режим эмуляции* с эмулируемым значением, соответствующим шагу 1 (см. рисунок 2.50).

Рисунок 2.50

Нажатия кнопки «^{Exed}steps</sup>» приводят к изменению эмулируемых значений в последовательности: «Шаг1» –> «Шаг2» –> «ШагN» –> …–> «Шаг2» –> «Шаг1» –> «Шаг2»…

Нажатие одной из кнопок « 9»,..., « 9» переводит прибор в *режим эмуляции с автоматической сменой шагов по времени*; при этом в левом верхнем углу экрана высвечиваются показания секундомера, производящего обратный отсчет секунд (см. рисунок 2.51). При достижении 0 секунд происходит смена номера шага в указанной последовательности и соответствующего эмулируемого значения выходного сигнала.

2.7.5.4. Программирование эмулируемых значений с шагом 10% от заданного диапазона

Выбор в диалоговом окне *Пошаговая* (см. рисунок 2.48) пункта «10% деление» и нажатие кнопки « вызовет на дисплей прибора диалоговое окно следующего вида:

Рисунок 2.52

В данном диалоговом окне пользователь вводит значения параметров **A**_в и **A**_н – соответственно верхний и нижний пределы диапазона эмулируемого сигнала.

Значение редактируемого параметра высвечивается в мигающем режиме. Редактирование производится с помощью кнопок цифровой клавиатуры прибора (см. п. 2.5.3). Нажатие кнопки « >» (« >») переключает режим редактирования с **A**₆ на **A**_H (с **A**_H на **A**₆).

При входе в данное диалоговое окно пользователю предоставляется возможность начать редактирование с параметра **A**₆, установленное значение которого высвечивается в режиме мигания.

Нажатие кнопки « » актуализирует введенные значения **A**_в и **A**_н и переводит прибор в *режим эмуляции* значений:

$$A_{i} = A_{H} + (A_{e} - A_{H}) \cdot 0, 1 \cdot i, \quad i = 0...10.$$
(2.1)

На дисплее высвечивается следующая информация:

Рисунок 2.53

Нажатия кнопки « тере» приводят к изменению эмулируемых значений в последовательности ($A_0 = A_H$, $A_{10} = A_g$): $A_0 -> A_1 -> A_2 -> ... A_{10} -> ... -> A_2 -> A_1 -> A_0 -> A_1...$ Нажатие одной из кнопок «⁰»,..., «⁹» переводит прибор в *режим эмуляции с автоматической сменой эмулируемых значений по времени*; при этом в левом верхнем углу экрана высвечиваются показания секундомера, производящего обратный отсчет секунд (см. рисунок 2.54). При достижении 0 секунд происходит смена эмулируемого значения выходного сигнала в указанной выше последовательности.

Рисунок 2.54

При нажатии кнопки «⁰» период смены шагов устанавливается равным 99 с. При нажатии кнопки «¹» период смены шагов устанавливается равным 10 с, при нажатии кнопки «²» – 20 с, и т.д.

2.7.6. Выход из режима эмуляции

Нажатие кнопки « выводит прибор из *режима эмуляции* в *режим меню* (см. рисунок 2.7) с одновременной остановкой записи в архив (если она была включена).

2.8. Работа в режиме симуляции

2.8.1. Вход в режим симуляции

Вход в режим симуляции может быть осуществлен одним из трех способов:

- 1) из Главного меню путем выбора пункта «Симуляция» (см. п. 2.5.4.3);
- при включении прибора (если перед выключением прибора последним из рабочих режимов был *режим симуляции*);
- 3) из Главного меню путем нажатия заранее запрограммированной «горячей»

кнопки « 1 »… « 6 » (см. п. 2.7.5.1).

2.8.2. Структура выводимой на дисплей информации в режиме симуляции

При входе в *режим симуляции* на дисплее ИКСУ-260 отображается текущее значение эмулируемого сигнала, равное 0.0, соответствующее ему измеренное значение токового сигнала, а также симулированное значение.

Пример экрана дисплея с описанием структуры отображаемой информации изображен на рисунке 2.55.

Рисунок 2.55

Обозначения к рисунку 2.55:

- 1 название режима (во время ввода значения эмулируемого сигнала здесь высвечивается «Установка»);
- 2 значение выходного унифицированного токового сигнала от поверяемого измерительного преобразователя;
- 3 преобразованное значение силы тока в физическую величину *A_{сим}* (симулированное значение);
- 4 эмулируемое значение;
- 5 информация о состоянии входов реле ИКСУ-260 (только при включенной функции **«Тест реле»**, см. п. 2.5.4.6);
- 6 информация об источнике эмулируемого сигнала.

2.8.3. Порядок работы в режиме симуляции с воспроизведением сигнала в виде ТП, мВ, мА

- Выключить прибор, нажав кнопку « 76 »;
- собрать схему, изображенную на рисунке 2.56, подключив разъем PLT168-PG входящего в комплект поставки кабеля: №1 (эмуляция ТП типа TXA с автоматической компенсацией температуры холодного спая), или №2 (эмуляция ТП типа TXK с автоматической компенсацией температуры холодного спая), или №5 (эмуляция сигнала в виде мВ или в виде ТП с ручной компенсацией температуры холодного спая), или №5 (эмуляция сигнала в виде мВ или в виде TП с ручной компенсацией температуры холодного спая), или №5 (эмуляция сигнала в виде мВ или в виде TП с ручной компенсацией температуры холодного спая), или №5 (эмуляция сигнала в виде мВ или №7 (эмуляция сигнала в виде мА) с соответствующим разъемом «эмуляция» ИКСУ, другой конец этого кабеля со входом поверяемого измерительного преобразователя; разъем PLT168-PG кабеля №6 или кабеля №7 подключить к соответствующему разъему «измерение» ИКСУ, другой конец к выходу измерительного преобразователя; разъем М615А-BNGD кабеля №8 подключить к соответствующему разъему «реле» ИКСУ, другой конец к выходам реле измерительного преобразователя;

П р и м е ч а н и е – При измерении сигналов от ТП других типов с автоматической компенсацией температуры холодного спая используются кабели, поставляемые по специальному заказу.

- включить прибор, нажав кнопку «
- нажать кнопку « васк » для входа в Главное меню;
- в *Главном меню* войти в пункт «Симуляция», затем из раскрывшегося списка выбрать один из пунктов «ТП», «Милливольты» или «Миллиамперы» и нажать кнопку « [INTER »;
- в случае выбора пункта «ТП» выполнить действия, описанные в п.п. 2.6.4 (при автоматической компенсации холодного спая), 2.6.5 (при ручной компенсации холодного спая);
- в диалоговом окне выбора диапазона тока (см. рисунок 2.15) выбрать требуемый пункт («0-5 мА» или «4-20 мА») и нажать кнопку « [NTER »;
- в открывшемся диалоговом окне (см. рисунок 2.16) ввести значения параметров *А_в* и *А_н* – соответственно верхний и нижний пределы диапазона пре-

образования входного унифицированного сигнала – и нажать кнопку « ENTER »;

Симуляция с воспроизведением сигнала в виде ТП, мВ, мА

Рисунок 2.56
- ввести эмулируемое значение с помощью клавиатуры прибора (в течение ввода в нижней части экрана высвечивается слово «Установка»);
- нажать кнопку « ENTER »;

В результате прибор перейдет в режим симуляции (см. рисунок 2.56).

Примечание – Нажатие заранее запрограммированной «горячей» кнопки в *Главном меню* переводит ИКСУ непосредственно в *режим симуляции*.

На выходе прибора генерируется сигнал заданной величины, который преобразуется измерительным преобразователем в унифицированный токовый сигнал и подается на измерительный вход прибора. Этот сигнал в свою очередь преобразуется в симулируемую величину **А**_{сим} согласно формуле:

$$\boldsymbol{A}_{\boldsymbol{c}\boldsymbol{u}\boldsymbol{M}} = \frac{I_{\hat{a}\tilde{o},i} - I_{i}}{I_{\hat{a}} - I_{i}} \cdot (\dot{A}_{\hat{a}} - \dot{A}_{i}) + \dot{A}_{i}, \qquad (2.2)$$

где *І*_{вх,*і*} – значение входного токового сигнала;

 I_{H} , I_{e} — нижнее и верхнее, соответственно, предельные значения диапазона выходного сигнала в виде силы постоянного тока (в нашем примере $I_{H}=4$, $I_{e}=20$).

2.8.4. Порядок работы в режиме симуляции с воспроизведением сигнала в виде TC, Ом

- Выключить прибор, нажав кнопку « У »;
- собрать схему, изображенную на рисунке 2.57, подключив разъем PLT164 кабеля №4, входящего в комплект поставки, с соответствующим разъемом «эмуляция» ИКСУ, а другой конец этого кабеля со входом поверяемого измерительного преобразователя; разъем PLT168-PG кабеля №6 или кабеля №7 подключить к соответствующему разъему «измерение» ИКСУ, другой конец к выходу измерительного преобразователя; разъем M615A-BNGD кабеля №8 подключить к соответствующему разъему «реле» ИКСУ, другой конец к выходам реле измерительного преобразователя;

П р и м е ч а н и е – В примере, изображенном на рисунке 2.56, используется кабель №4 для воспроизведения сигнала в виде ТС типа Pt100 IEC(385).

- включить прибор, нажав кнопку « 20 гг »
- нажать кнопку « васк » для входа в Главное меню;
- в Главном меню войти в пункт «Симуляция», затем из раскрывшегося списка

выбрать требуемый пункт («TC» или «Ом») и нажать кнопку « [INTER »;

Симуляция с воспроизведением сигнала в виде ТС, Ом

- в случае выбора в предыдущем шаге пункта «TC» выбрать из списка тип TC, например, Pt100 IEC(385), и нажать кнопку « ENTER »;
- в диалоговом окне выбора диапазона тока (см. рисунок 2.15) выбрать требуемый пункт («0-5 мА» или «4-20 мА») и нажать кнопку « [INTER »;

 в открывшемся диалоговом окне (см. рисунок 2.16) ввести значения параметров *А_в* и *А_н* – соответственно верхний и нижний пределы диапазона пре-

образования входного унифицированного сигнала – и нажать кнопку « ENTER »;

- ввести эмулируемое значение с помощью клавиатуры прибора (в течение ввода в нижней части экрана высвечивается слово «Установка»);
- нажать кнопку « ENTER ».

В результате прибор перейдет в режим симуляции (см. рисунок 2.57).

Примечание – Нажатие заранее запрограммированной «горячей» кнопки в *Главном меню* переводит ИКСУ непосредственно в *режим симуляции*.

На выходе ИКСУ будет сгенерирован сигнал заданной величины, который преобразуется измерительным преобразователем в унифицированный токовый сигнал и подается на измерительный вход прибора. Этот сигнал в свою очередь преобразуется в симулируемую величину согласно формуле (2.2).

2.8.5. Дополнительные функции в режиме симуляции

В режиме симуляции пользователю предоставляются следующие функции:

- программирование «горячей» кнопки;
- архивирование результатов;
- программирование эмулируемых значений в пошаговом режиме;
- программирование эмулируемых значений по 10 % делению от заданного диапазона.

Осуществление данных функций в *режиме симуляции* аналогично их осуществлению в *режиме эмуляции* (описание см. в п. 2.7.5).

2.8.6. Выход из режима симуляции

Нажатие кнопки « выводит прибор из *режима симуляции* в *режим меню* с одновременной остановкой записи в архив (если она была включена).

2.9. Работа в режиме поверки ПД

2.9.1. Вход в режим поверки преобразователя давления (ПД)

Вход в *режим поверки ПД* может быть осуществлен одним из двух способов:

- 1) из Главного меню путем выбора пункта «Поверка ПД» (см. п. 2.5.4.4);
- при включении прибора (если перед выключением прибора последним из рабочих режимов был *режим поверки ПД*);

2.9.2. Структура выводимой на дисплей информации в режиме поверки ПД

При входе в *режим поверки ПД* на дисплее ИКСУ-260 отображаются текущие значения эталонного датчика давления *P*_{эт}, измеренное значение силы тока *I*_{изм}, измеренное значение давления от поверяемого датчика давления *P*_{изм}, погрешность $|P_{3m} - P_{u_{3M}}|$, выраженная в % от диапазона преобразования давления (*P*₆ - *P*_H), и информация о состоянии входов реле (только при включенной функции **«Тест реле»**, см. п. 2.5.4.6).

Пример экрана дисплея с описанием структуры отображаемой информации изображен на рисунке 2.58.

		12:19	
F	Эт. :	452.23 кПа	-2
Í	ИЗМ :	5.01 MA -	-3
P	<u>'изм:</u>	450.31кПа	-4
	Іогр:	1.01%-	-5
P	РЕЛЕ1=0	РЕЛЕ 2=0 —	-6
1_[Іоверка	ЭПД	

Рисунок 2.58

Обозначения к рисунку 2.58:

- 1 название режима;
- 2 показание эталонного датчика давления;
- 3 измеренное значение силы тока;
- 4 измеренное значение давления;
- 5 погрешность, % от диапазона преобразования давления;
- 6 информация о состоянии входов реле ИКСУ-260.

2.9.3. Порядок работы в режиме поверки ПД при поверке датчика давления с унифицированным выходным сигналом в виде силы постоянного тока

- Выключить прибор, нажав кнопку «
- собрать схему, изображенную на рисунке 2.59, подключив разъем PLT168-PG кабеля №6, входящего в комплект поставки, с соответствующим разъемом «измерение» ИКСУ, а другой конец этого кабеля с токовым выходом поверя-емого преобразователя давления (ПД); разъем M615A-BNGD кабеля №8 под-ключить к соответствующему разъему «реле» ИКСУ, другой конец к выходам реле поверяемого ПД; один из концов кабеля К1 (в базовый комплект не вхо-дит, заказывается отдельно), подключить к разъему «инт» ИКСУ, другой конец к ПДЭ (могут быть поставлены по отдельному заказу);

П р и м е ч а н и е – При отсутствии у поверяемого датчика давления электронного преобразователя давления (ЭПД) с унифицированным выходным сигналом соединений его с ИКСУ не производится.

- включить прибор, нажав кнопку « 2005 »;
- включить ПДЭ (только для ПДЭ с индикацией);
- нажать кнопку « васк » для входа в Главное меню;
- в Главном меню войти в пункт «Поверка ПД», затем выбрать «Электронный

ПД» и нажать кнопку « enter »;

П р и м е ч а н и е – При отсутствии у поверяемого датчика давления ЭПД с унифицированным выходным сигналом необходимо выбрать пункт «Механический ПД».

- выбрать единицы измерения давления для эталонного датчика, например,

«кПа», и нажать кнопку « ENTER »;

- выбрать единицы измерения давления для поверяемого датчика, например,

«кПа», и нажать кнопку « [ITER »;

- выбрать диапазон преобразования выходного сигнала, например, «4-20 мА», и нажать кнопку « [INTER »;
- в открывшемся диалоговом окне (см. рисунок 2.21) ввести значения параметров *P_e* и *P_H* – соответственно верхний и нижний пределы диапазона пре-

образования давления поверяемого датчика – и нажать кнопку « enter »;

В результате прибор перейдет в режим поверки ПД (см. рисунок 2.59). Поверка датчика давления с унифицированным выходным сигналом

Рисунок 2.59

2.9.4. Порядок работы в режиме поверки ПД с использованием ПК

- Выключить прибор, нажав кнопку «
- собрать схему, изображенную на рисунке 2.60, подключив разъем PLT168-PG кабеля №6, входящего в комплект поставки, с соответствующим разъемом «измерение» ИКСУ, а другой конец этого кабеля с токовым выходом поверяемого ПД; разъем M615A-BNGD кабеля №8 подключить к соответствующему разъему «реле» ИКСУ, другой конец к выходам реле поверяемого ПД; разъем M614A-BNGD соединительного кабеля модуля МИГР-05U-1 подключить к соответствующему разъему «инт» ИКСУ, сам модуль МИГР-05U-1 подключить к компьютеру интерфейсным кабелем «mini USB USB A» из комплекта МИГР-05U-1; соединить ПДЭ с модулем МИГР-05U-2, сам модуль МИГР-05U-2 подключить к компьютеру интерфейсным кабелем «mini USB USB A» из комплекта МИГР-05U-2.
- включить прибор, нажав кнопку «
- включить ПДЭ (только для ПДЭ с индикацией);
- запустить на ПК программу «АРМ ИКСУ260.exe» (поставляется отдельно) и, следуя руководству оператора, выполнить поверку ПД.

В случае успешного взаимодействия с ПК на дисплее ИКСУ-260 выведется сообщение:

«ПРИБОР НАХОДИТСЯ ПОД УПРАВЛЕНИЕМ программы АРМ».

Рисунок 2.60

2.9.5. Архивирование результатов

Нажатие кнопки « включает архивацию (значение параметра «Период записи» больше 0), при этом в верхней строке дисплея появляется надпись «Архив».

Повторное нажатие кнопки « сстанавливает архивацию.

Все необходимые настройки для архивирования выполняются в пункте *Главного меню* «Архив» (см. п. 2.5.4.5).

Примечание – Если значение параметра **«Период записи»** установлено равным 0, то при нажатии кнопки « в архив записывается только один кадр, надпись «Архив» при этом на дисплей не выводится.

2.9.6. Выход из режима поверки ПД

Нажатие кнопки « выводит прибор из *режима поверки ПД* в *режим меню* с одновременной остановкой записи в архив (если она была включена).

2.10. Работа в режиме просмотра архива

2.10.1. Вход в режим просмотра архива

Вход в режим просмотра архива осуществляется из Главного меню путем выбора

пункта «Архив» –> «Просмотр архива» и нажатием кнопки « ENTER » (см. п. 2.5.4.5).

2.10.2. Структура архива

Запись данных в архив ИКСУ-260 производится кольцевым способом в виде кадров, каждый из которых в зависимости от рабочего режима содержит следующую информацию:

- название объекта;
- номер датчика;
- название режима;
- информация об источнике входного (*режим измерений*) или воспроизводимого (*режим эмуляции*/ *симуляции*) сигнала;
- дата и время записи;
- для режима измерений значение измеренной величины, для режима эмуляции – значения эмулированной величины и измеренной величины силы тока, для режима симуляции – значения эмулированной величины, измеренной величины силы тока и симулированной величины, для режима поверки ПД – значения показаний эталонного и поверяемого датчика, а также погрешность, выраженная в % от диапазона изменения давления.

Кадры объединены в виде *блоков*, каждый из которых содержит 32 кадра данных. Вся память прибора, отведенная на архивирование, составляет 32 блока.

2.10.3. Структура выводимой на дисплей информации в режиме просмотра архива

При входе в *режим просмотра архива* на дисплей прибора целиком выводится информация, заключенная в одном кадре записи и которая, например, для режима измерений представляется в следующем виде (см. рисунок 2.61).

Рисунок 2.61

Обозначения к рисунку 2.61:

- 1 название источника отображаемых данных;
- 2 название объекта (если объект не выбран, то выводится «******»);
- 3 название режима, в котором происходила запись;
- 4 дата записи;
- 5 название измеренной величины;
- 6 номер кадра;
- 7 номер блока;
- 8 заводской номер датчика (если значение параметра «Зав. номер датч.» установлено равным 0, то выводится «– – – – »);
- 9 тип источника измеренного сигнала;
- 10 время записи;
- 11 значение измеренной величины.

В случае если текущий кадр пустой, то на дисплей прибора выводится сообщение следующего вида

Архив	#	10/\$15
* * * * * *	ДАТ	#
00/00/2	2007	00:00

Рисунок 2.62

2.10.4. Просмотр архива

В режиме просмотра архива функции кнопок описаны ниже:

- кнопка « >» (« >») переход к кадру архива с номером на единицу большим (меньшим);
- кнопка «—)» («]) переход к блоку архива с номером на единицу большим (меньшим) с одновременной установкой счетчика кадров в 1;
- кнопка « PROGR » переход в начало архива (счетчики кадров и блоков устанавливаются равными единице);
- кнопка « васк » выход в *режим меню*.

2.11. Сообщения об ошибках

При возникновении в ИКСУ-260 каких-либо сбоев или неполадок на дисплее высвечивается сообщение об ошибке. Сообщения об ошибках и способы их устранения приведены в таблице 2.2.

№ п/п	Сообщение на дисплее	Вероятная причина	Способ устранения
1	«»	Ошибка формата числа	Уменьшить значение параметра «Точность»
2	Батарея питания разряжена! Код ошибки 100	Батарея питания раз- ряжена, недостаточное питание.	Зарядить аккумулятор
3	Модуль РСF8583 недоступен! Код ошибки 40-45	Сбой или неисправ- ность микросхемы ча- сов реального времени	
4	ППЗУ платы недоступен! Код ошибки 21-35	Ошибка обмена или данных ППЗУ микро- процессорной платы	Ремонт только на заводе-
5	ППЗУ архива недоступен! Код ошибки 15-17	Ошибка обмена или данных ППЗУ архива	изготовителе
6	Неизвестный код ошибки!	Сбой оперативной па- мяти, причина ошибки неизвестна	
7	Значение выходит за пределы допустимого	Введенное с клавиату- ры значение параметра выходит за пределы допустимого	Дождаться сообщения о вводе параметра и ввести значение.
8	<<< . <<<	Измеренное значение выходит за пределы допустимого или датчик не подключен.	Проверить подключение датчика

Таблица 2.2

2.12. Маркировка и пломбирование

2.12.1. Маркировка соответствует ГОСТ 26828-86E, ГОСТ Р 51330.0-99 и чертежу НКГЖ.408741.003СБ и включает:

- товарный знак предприятия-изготовителя;
- шифр ИКСУ-260;
- знак утверждения типа;
- дату выпуска;
- порядковый номер по системе нумерации предприятия-изготовителя.

На передней панели взрывозащищенного ИКСУ-260Ex нанесена маркировка взрывозащиты 0ExialIAT6 X, на нижней панели рядом с разъемом внешнего питания - надпись «Во взрывоопасной зоне не включать» и на верхней панели у клеммных соединителей для подключения первичных преобразователей и разъема RS-232 для подключения ПДЭ-010Ex – надписи «Искробезопасные цепи».

Температура окружающей среды в условиях эксплуатации:

- диапазон температур окружающей среды: $-20^{\circ}C \le t_a \le +60^{\circ}C$.

Электрические параметры выходных искробезопасных цепей:

 встроенного стабилизатора напряжения для питания первичны зователей с унифицированным выходным сигналом 420 мА: 	х преобра-
- максимальное выходное напряжение, U ₀	$(24 \pm 0,48)$ B;
- напряжение при токе нагрузки 25 мА	$(24 \pm 0,48)$ B;
- максимальный выходной ток, I ₀	50 мА;
- максимальная выходная мощность, P ₀	0,3 Вт;
- максимальная внешняя емкость, C ₀	0,3 мкФ;
- максимальная внешняя индуктивность, L ₀	10 мГн;
- встроенного стабилизатора напряжения для питания ПДЭ-010 наг	ряжением 5 В:
- максимальное выходное напряжение, U ₀	$(5 \pm 0,25)$ B;
- максимальный выходной ток, I ₀	50 мA;
- максимальная выходная мощность, P ₀	0,06 Bt;
- максимальная внешняя емкость, C ₀	0,47 мкФ;
- максимальная внешняя индуктивность, L ₀	5 мГн.

Способ нанесения маркировки – рельефный или печатный, обеспечивающий сохранность маркировки в течение всего срока эксплуатации.

2.12.2. Пломбирование

ИКСУ-260 опломбированы представителем ОТК предприятия-изготовителя.

2.13. Упаковка

2.13.1. Упаковка производится в соответствии с ГОСТ 23170-78Е и обеспечивает полную сохраняемость ИКСУ-260.

3. ИСПОЛЬЗОВАНИЕ ИЗДЕЛИЯ ПО НАЗНАЧЕНИЮ

3.1. Подготовка изделий к использованию

3.1.1. Указания мер безопасности

3.1.1.1. По способу защиты человека от поражения электрическим током ИКСУ-260 соответствуют классу III ГОСТ 12.2.007.0-75.

3.1.1.2. Первичные преобразователи и внешние устройства подключать согласно маркировке при отключенном напряжении питания.

3.1.1.3. При эксплуатации ИКСУ-260 необходимо соблюдать требования ГОСТ 12.3.019-80, ГОСТ Р 51330.13-99, "Правил эксплуатации электроустановок потребителей" (ПЭЭП, гл.3.4), "Правил техники безопасности при эксплуатации электроустановок потребителей" и гл. 7.3 ПУЭ, утвержденных Госэнергонадзором, а также дополнительные требования безопасной эксплуатации ИКСУ-260Ex, приведенные в п. 2.3.7 настоящего РЭ, относящиеся к знаку «Х» в маркировке взрывозащиты.

3.1.1.4. ИКСУ-260 при хранении, транспортировании, эксплуатации (применении) не являются опасными в экологическом отношении.

3.1.1.5. Уровень напряжения радиопомех, создаваемых ИКСУ-260 при работе, соответствует требованиям "Общесоюзных норм допускаемых индустриальных радиопомех (Нормы 8-87; 11-82)".

3.1.2. Внешний осмотр

3.1.2.1. Распаковать ИКСУ-260 и произвести внешний осмотр, при котором должно быть установлено соответствие следующим требованиям:

1) ИКСУ-260 должны быть укомплектованы в соответствии с разделом 3 формуляра НКГЖ.408741.003ФО;

2) заводской номер на ИКСУ-260 должен соответствовать указанному в формуляре;

3) ИКСУ-260 не должны иметь механических повреждений, при которых их эксплуатация не допустима.

86

3.1.3. Опробование

3.1.3.1. Опробование работоспособности ИКСУ-260 произвести в следующей последовательности:

1) подсоединить кабель КИ260I2 к разъему «Эмуляция», кабель КИ260I1 – к разъему «Измерение», расположенным на верхней панели ИКСУ-260;

2) соединить концы кабелей одного цвета между собой;

5) в соответствии п. 2.4.3 настоящего руководства по эксплуатации в режиме эмуляции (воспроизведения) выбрать тип воспроизводимого выходного сигнала в виде источника постоянного тока, мА.

6) установить с помощью цифровых кнопок на передней панели ИКСУ-260 последовательно значения тока 0; 0,1; 5; 12 и 25 мА;

7) убедиться, что измеренное значение тока не превышает значения основной допускаемой погрешности, указанной в таблице 2.1.

3.2. Использование изделия

3.2.1. Соединить ИКСУ-260 с внешними устройствами в соответствии со схемами электрическими соединений, приведенными на рисунках 2.44, 2.45, 2.55, 2.56, 2.58, 2.59 при помощи соединительных кабелей из комплекта поставки (см. Приложение А).

ВНИМАНИЕ! 1. Подключение напряжения свыше 5 В к контактам 1, 2 разъема «Измерение» приводит к выходу ИКСУ-260 из строя. 2. Подключение тока свыше 100 мА к контактам 5, 6 разъема «Измерение» приводит к выходу ИКСУ-260 из строя.

3.2.2. При необходимости произвести конфигурацию ИКСУ-260 с помощью кно-

пок в соответствии с настоящим руководством или с помощью ПК, для чего:

1) подключить ИКСУ-260 к ПК посредством МИГР-05U-1;

2) загрузить программу конфигурации ИКСУ-260;

3) выполнить действия согласно руководству оператора.

ВНИМАНИЕ! При конфигурировании ИКСУ-260Ex с помощью ПК, ИКСУ-260Ex и ПК должны быть установлены вне взрывоопасной зоны.

4. МЕТОДИКА ПОВЕРКИ

4.1. Поверку ИКСУ-260 проводят органы Государственной метрологической службы или другие аккредитованные по ПР 50.2.014-2002 на право поверки организации. Требования к организации, порядку проведения поверки и форма представления результатов поверки определяются ПР 50.2.006-94 "ГСИ. Поверка средств измерений. Организация и порядок проведения".

4.2. Межповерочный интервал составляет два года.

4.3. Операции и средства поверки

4.3.1. При проведении поверки выполняют операции, указанные в таблице 4.1. Таблица 4.1

		Обязательность		ЭЛЬНОСТЬ
N⁰	Наименование операции	Номер	выполнения	операции при
п/п	Паименование операции	пункта	первичной	периодической
			поверке	поверке
1	Внешний осмотр	4.6.1	Да	Да
2	Опробование	4.6.2	Да	Да
3	Проверка электрической прочности	4.6.3	Да	Нет
	изоляции			
4	Проверка электрического сопротивления	4.6.4	Да	Нет
	изоляции			
5	Определение основной абсолютной	4.6.5	Да	Да
	погрешности воспроизведения напряжения			
6	Определение основной абсолютной	4.6.6	Да	Да
	погрешности воспроизведения			
	сопротивления			
7	Определение основной абсолютной	4.6.7	Да	Да
	погрешности воспроизведения силы			
	постоянного тока			
8	Определение основной абсолютной	4.6.8	Да	Да
	погрешности измерения напряжения			
9	Определение основной абсолютной	4.6.9	Да	Да
	погрешности измерения сопротивления			
	постоянному току			
10	Определение основной абсолютной	4.6.10	Да	Да
	погрешности измерения силы постоянного			
	тока			
11	Оформление результатов поверки	4.7	Да	Да

4.3.2. При проведении поверки применяют основные и вспомогательные средства поверки, указанные в таблице 4.2.

la	аблица 4.2	
№ п/п	Наименование средства поверки и обозначение НТД	Технические характеристики
1	Мера напряжения постоянного тока МН-1 МГФК.411631.001РЭ	Выходное напряжение: 1,018 В±0,001 В. Нестабильность выходного напряжения за период 15 суток 1,5·10 ⁻⁶
2	Меры электрического сопротивления однозначные MC3006 ТУ 303-10.0035-91	Номинальные значения сопротивлений: 10 Ом; 50 Ом; 100 Ом; 150 Ом; 300 Ом. Класс точности 0,001
3	Компаратор напряжений Р3017 3.458.100 ТО	Пределы измерений: 0,1111110 В; 0,1111111 В. Пределы допускаемой основной погрешности: ±(2U+0,04) мкВ, ±(U+0,1) мкВ, где, U - номинальное значение компарируемого напряжения, В.
4	Прибор для поверки вольтметров, дифференциальный вольтметр В1-12 ТУ ХВ2.085.006	Поддиапазон установки выходных напряжений: 100 мкВ100 В. Предел допускаемой основной погрешности установки калиброванных напряжений: 5·10 ^{-5.} Uк+200 мкВ. Поддиапазон установки калиброванных токов: 1 нА1 мА. Предел допускаемой основной погрешности установки калиброванных токов: 1,5·10 ^{-4.} Iк+10 нА. Поддиапазон установки калиброванных токов: 100 нА100 мА. Предел допускаемой основной погрешности установки калиброванных токов: 2,5·10 ^{-4.} Iк+1 мкА.
5	Прибор для поверки вольтметров и калибраторов В1-18 ТУ ХВ2.085.019	Диапазон измеряемых напряжений, В 1·10 ⁻⁷ 10 ⁻³ Основная погрешность измерения напряжения (без учета погрешности меры э.д.с) на пределе 10 В: ±(% от U+ % от U _n) 0,0003+0,00012
	Применания	

Примечания

1 Все перечисленные в таблице 4.2 средства измерений должны иметь действующие свидетельства о поверке.

2 Допускается применять отдельные, вновь разработанные или находящиеся в применении средства поверки и оборудование, по своим характеристикам не уступающие указанным в настоящей методике поверки.

4.4. Требования безопасности

4.4.1. При поверке выполняют требования техники безопасности, изложенные в

документации на применяемые средства поверки и оборудование.

4.5. Условия поверки и подготовка к ней

4.5.1. При проведении поверки соблюдают следующие условия:

20±5;
3080;
86106,7;
(630800);
220±4,4;
50±1,0.

Питание ИКСУ-260 осуществляется от:

- встроенного блока аккумуляторов с напряжением питания, В 4,8;

- сетевого блока питания (адаптера) с номинальным напряжением питания, В 12.

Внешние электрические и магнитные поля должны отсутствовать или находиться в пределах, не влияющих на работу ИКСУ-260.

Поверяемые ИКСУ-260 и используемые средства поверки должны быть защищены от ударов, вибраций, тряски, влияющих на их работу.

4.5.2. Операции, производимые со средствами поверки и поверяемыми ИКСУ-260, должны выполняться в соответствии с указаниями, приведенными в эксплуатационной документации.

4.5.3. Перед проведением поверки выполняют следующие подготовительные работы:

4.5.3.1. ИКСУ-260 выдерживают в условиях, установленных в пп. 4.5.1.1)... 4.5.1.3) в течение 6 ч.

4.5.3.2. Средства поверки подготавливают к работе в соответствии с эксплуатационной документацией.

4.6. Проведение поверки

4.6.1. Внешний осмотр поверяемого ИКСУ-260 осуществляется в соответствии с п. 3.1.2 настоящего руководства по эксплуатации.

4.6.2. Опробование поверяемого ИКСУ-260 состоит в проверке его работоспособности в соответствии с п. 3.1.3 настоящего руководства по эксплуатации.

4.6.3. Проверка электрической прочности изоляции

4.6.3.1. Испытания проводят между корпусом и электрическими цепями, объединенными вместе, испытательным напряжением 500 В. Проверку электрической прочности изоляции производят на установке GPI-745А.

Испытательное напряжение следует повышать плавно, начиная с нуля до испытательного в течение 5-10 с. Уменьшение напряжения до нуля должно производиться с такой же скоростью.

Изоляцию выдерживают под действием испытательного напряжения в течение 1 мин. Затем напряжение плавно снижают до нуля, после чего испытательную установку отключают.

Во время проверки не должно происходить пробоев и поверхностного перекрытия изоляции.

4.6.4. Проверка электрического сопротивления изоляции

4.6.4.1. Проверку электрического сопротивления изоляции цепей ИКСУ-260 производят мегаомметром Ф 4102/1-1М или другим прибором для измерения электрического сопротивления с рабочим напряжением не более 100 В.

Отсчет показаний производят по истечении 1 мин после приложения напряжения между соединенными вместе электрическими цепями и корпусом.

Сопротивление изоляции не должно быть менее 20 МОм.

4.6.5. Определение основной абсолютной погрешности воспроизведения напряжения

4.6.5.1. Подключают ИКСУ-260 кабелем КИ260U к блоку измерительному компаратора напряжений РЗ017 (далее – РЗ017) в соответствии с рисунком 4.1.

Рисунок 4.1 – Установка для поверки ИКСУ-260 в режиме воспроизведения напряжения (минус10 мВ)

4.6.5.2. Устанавливают на ИКСУ-260 значение воспроизводимого напряжения минус 10 мВ.

4.6.5.3. Декадными переключателями блока измерительного Р3017 производят полное уравновешивание входного напряжения, подаваемого с ИКСУ-260.

4.6.5.4. Снимают показания декадных переключателей блока измерительного Р3017.

4.6.5.5. Подключают ИКСУ-260 кабелем КИ260U к блоку измерительному Р3017 в соответствии с рисунком 4.2.

Рисунок 4.2 – Установка для поверки ИКСУ-260 в режиме воспроизведения напряжения (0; 0,22; 2, 30; 60; 100 мВ)

4.6.5.6. Повторяют операции по пп. 4.6.5.2...4.6.5.4 для поверяемых точек: 0; 0,22; 2, 30; 60 и 100 мВ.

4.6.5.7. Абсолютная погрешность не должна превышать значений, указанных в таблице 4.1.

Таблица 4.1

Поверяемая точка, мВ	Минус 10	0	0,22	2	30	60	100
Пределы основной аб- солютной погрешности, мкВ	±3,7	±3	±3,02	±3,14	±5,1	±7,2	±10

4.6.6. Определение основной абсолютной погрешности воспроизведения сопротивления

4.6.6.1. Подключают ИКСУ-260 кабелем КИ260R2 к эталонной (образцовой) мере сопротивления МС3006 (R_{этал}= 100 Ом), вольтметру В1-12 и компаратору Р3017 в соответствии с рисунком 4.3.

Рисунок 4.3 – Установка для поверки ИКСУ-260 в режиме воспроизведения сопротивления

4.6.6.2. Устанавливают на ИКСУ-260 значение воспроизводимого сопротивления 0 Ом.

4.6.6.3. С помощью вольтметра В1-12 устанавливают ток 0,3 мА.

4.6.6.4. Компаратором Р3017 измеряют напряжение U₁ на потенциальных выводах ИКСУ-260.

4.6.6.5. Измеряют напряжение U₂ на мере сопротивления МС3006.

4.6.6.6. Рассчитывают измеренное сопротивление R_{изм} по формуле

$$R_{\dot{e}c\dot{i}} = R_{\dot{y}\dot{o}\dot{a}\ddot{e}} \cdot \frac{U_1}{U_2}.$$
(4.1)

4.6.6.7. Повторяют операции по пп. 4.6.6.2... 4.6.6.6 для поверяемых точек: 0,22; 40; 80; 200; 300 Ом.

4.6.6.8. Абсолютная погрешность не должна превышать значений, указанных в таблице 4.2

Таблица 4.2

Поверяемая точка, Ом	0	0,22	40	80	200	300
Пределы основной абсолют- ной погрешности, Ом		±0,0	015		±0,0	025

4.6.7. Определение основной абсолютной погрешности воспроизведения силы постоянного тока

4.6.7.1. Подключают ИКСУ-260 кабелем КИ260I2 к токовым выводам эталонной (образцовой) меры электрического сопротивления МС3006 (R_{этал}= 100 Ом) в соответствии с рисунком 4.4.

Рисунок 4.4 – Установка для поверки ИКСУ-260 в режиме воспроизведения силы постоянного тока

4.6.7.2. Устанавливают вольтметр В1-18 в режим измерения напряжения.

4.6.7.3. Устанавливают на ИКСУ-260 значение воспроизводимого тока 0 мА, с вольтметра В1-18 считывают измеренное значения напряжения U_{изм} и рассчитывают ток I по формуле

4.6.7.4. Повторяют операции по п. 4.6.7.3 для поверяемых точек: 0,222; 2; 10; 20; 25 мА.

4.6.7.5. Абсолютная погрешность не должна превышать значений, указанных в таблице 4.3.

Таблица 4.3

Поверяемая точка, мА	0	0,222	2	10	20	25
Пределы основной абсо- лютной погрешности, мкА	±1	±1,022	±1,2	±2	±3	±3,5

4.6.8. Определение основной абсолютной погрешности измерения напряжения

4.6.8.1. Подключают ИКСУ-260 кабелем КИ260U к компаратору Р3017 в соответствии с рисунком 4.5.

	MB+	+U1
	MB-	U1
иксу		P3017

Рисунок 4.5 – Установка для поверки ИКСУ-260 в режиме измерения напряжения

4.6.8.2. Устанавливают компаратор РЗ017 в режим воспроизведения напряжения.

4.6.8.3. Устанавливают на компараторе РЗ017 значение выходного напряжения 0 мВ.

4.6.8.4. С ИКСУ-260 считывают измеренное значение.

4.6.8.5. Повторяют операции по пп. 4.6.8.2, 4.6.8.3 для поверяемых точек: 10; 50 и 100 мВ.

4.6.8.6. Абсолютная погрешность не должна превышать значений, указанных в таблице 4.4.

Таблица 4.4

Поверяемая точка, мВ	0	10	50	100
Пределы основной абсо-	+3	+3.7	+6 5	+10
лютной погрешности, мкВ	<u>-</u> 5	$\pm 3,7$	±0,5	±10

4.6.9. Определение основной абсолютной погрешности измерения сопротивления постоянному току

4.6.9.1. Собирают измерительную схему в соответствии с рисунком 4.6, последовательно соединив токовые выводы эталонной меры сопротивления МС3006 (R_{этал} = 100 Ом) и попарно замкнутые выводы промежуточной меры сопротивления МС 3006 (R_{пр} =10 Ом) к токовому выходу вольтметра B1-12.

Рисунок 4.6 – Установка для поверки ИКСУ-260 в режиме измерения сопротивления постоянному току

4.6.9.2. На вольтметре В1-12 устанавливают значение тока, равное 0,3 мА.

4.6.9.3. Измеряют напряжение U₁ и U₂ компаратором напряжений P3017.

4.6.9.4. Вычисляют точное значение промежуточного сопротивления R_{прв} по формуле

$$\mathsf{R}_{\mathsf{прв}} = \mathsf{R}_{\mathfrak{S}\mathsf{TAL}} \cdot \mathsf{U}_1 / \mathsf{U}_2. \tag{4.3}$$

4.6.9.5. Отключают однозначную меру промежуточного сопротивления MC3006 (R_{пр}=10 Ом).

4.6.9.6. Подключают ИКСУ-260 кабелем КИ260R1 к промежуточной мере электрического сопротивления МС3006 (R_{пр}= 10 Oм) в соответствии с рисунком 4.7.

Рисунок 4.7 – Установка для поверки ИКСУ-260 в режиме измерения сопротивления постоянному току

4.6.9.7. С ИКСУ-260 считывают измеренное значение сопротивления R_{изм} и вычисляют абсолютную погрешность ∆R по формуле

$$\Delta \mathsf{R} = \mathsf{R}_{\mathsf{ПPB}} - \mathsf{R}_{\mathsf{ИЗM}} \,. \tag{4.4}$$

4.6.9.8. Повторяют операции по пп. 4.6.9.2 ... 4.6.9.7 для значений сопротивления промежуточной меры MC3006 R_{np} , равных 0; 50, 100, 150, 300 Ом.

4.6.9.9. Абсолютная погрешность не должна превышать ±0,01 Ом в каждой поверяемой точке.

4.6.10. Определение основной абсолютной погрешности измерения силы постоянного тока

4.6.10.1. Подключают ИКСУ-260 кабелем КИ260I1 к вольтметру В1-12 и токовым выводам промежуточной меры сопротивления МС3006 (R_{пр}=100 Oм) в соответствии с рисунком 4.8.

4.6.10.2. На вольтметре В1-12 устанавливают значение выходного тока 0,222 мА.

Рисунок 4.8-Установка для поверки ИКСУ-260 в режиме измерения силы постоянного тока

4.6.10.3. С вольтметра В1-18 снимают показания напряжения U и рассчитывают ток І_{расч} по формуле

$$I_{pacy} = U/R_{np}.$$
 (4.5)

4.6.10.4. С ИКСУ-260 считывают значение тока $I_{иксу}$ и вычисляют абсолютную погрешность ΔI по формуле

$$\Delta I = I_{\text{pacy-}} I_{\text{иксу.}} \tag{4.6}$$

4.6.10.5. Повторяют операции по пп. 4.6.10.2, 4.6.10.3 для поверяемых точек 0; 2; 10; 20; 25 мА.

4.6.10.6. Абсолютная погрешность не должна превышать значений, указанных в таблице 4.5.

Таблица 4.5

Поверяемая точка, мА	0,222	0	2	10	20	25
Пределы основной абсо- лютной погрешности, мкА	±1,022	±1	±1,2	±2	±3	±3,5

4.7. Оформление результатов поверки

4.7.2. Положительные результаты первичной и периодической поверок ИКСУ-260 органом Государственной метрологической службой оформляют свидетельством о государственной поверке установленной формы по ПР 50.2.006-94.

4.7.3. При отрицательных результатах поверки ИКСУ-260 не допускают к применению до выяснения причин неисправностей и их устранения.

После устранения обнаруженных неисправностей проводят повторную поверку, результаты повторной поверки – окончательные.

5. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

5.1. Техническое обслуживание ИКСУ-260 сводится к соблюдению правил эксплуатации, хранения и транспортирования, изложенных в настоящем руководстве по эксплуатации, профилактическим осмотрам, периодической поверке и ремонтным работам.

5.2. Профилактические осмотры проводятся в порядке, установленном на объектах эксплуатации ИКСУ-260, и включают:

1) внешний осмотр;

 проверку прочности крепления линий связи ИКСУ-260 с первичными преобразователями при работе в режиме измерений и с устройствами в режиме воспроизведения, источником питания;

3) проверку функционирования.

ИКСУ-260 считают функционирующими, если его показания ориентировочно совпадают с измеряемой величиной.

5.3. Периодическую поверку ИКСУ-260 производят не реже одного раза в два года в соответствии с указаниями, приведенными в разделе 4 настоящего руководства по эксплуатации.

5.4. ИКСУ-260 с неисправностями, не подлежащими устранению при профилактическом осмотре, или не прошедшие периодическую поверку, подлежат текущему ремонту.

Ремонт ИКСУ-260 производится на предприятии-изготовителе.

5.5. Средства обеспечения взрывозащиты при техническом обслуживании ИКСУ-260Ex

При техническом обслуживании взрывозащищенного ИКСУ-260Ex необходимо руководствоваться указаниями, приведенными в п. 2.3.7 настоящего руководства по эксплуатации.

Ремонт взрывозащищенного ИКСУ-260Ex производится на предприятииизготовителе в соответствии с ГОСТ Р 51330.18-99.

98

6. ХРАНЕНИЕ

6.1. Условия хранения ИКСУ-260 в транспортной таре на складе изготовителя и потребителя должны соответствовать условиям I ГОСТ 15150-69.

В воздухе не должны присутствовать агрессивные примеси.

6.2. Расположение ИКСУ-260 в хранилищах должно обеспечивать свободный доступ к нему.

6.3. ИКСУ-260 следует хранить на стеллажах.

6.4. Расстояние между стенами, полом хранилища и ИКСУ-260 должно быть не менее 100 мм.

7. ТРАНСПОРТИРОВАНИЕ

7.1. ИКСУ-260 транспортируется всеми видами транспорта в крытых транспортных средствах. Крепление тары в транспортных средствах должно производиться согласно правилам, действующим на соответствующих видах транспорта.

7.2. Условия транспортирования ИКСУ-260 должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 50 до плюс 60 °C с соблюдением мер защиты от ударов и вибраций.

7.3. Транспортировать ИКСУ-260 следует упакованным в пакеты или поштучно.

7.4. Транспортировать ИКСУ-260 в коробках следует в соответствии с требованиями ГОСТ 21929-76.

8. УТИЛИЗАЦИЯ

8.1. ИКСУ-260 не содержат вредных материалов и веществ, требующих специальных методов утилизации.

8.2. После окончания срока службы ИКСУ-260 подвергаются мероприятиям по подготовке и отправке на утилизацию. При этом следует руководствоваться нормативно-техническими документами, принятыми в эксплуатирующей организации.

99

Приложение А

Схема электрическая соединений кабелей ИКСУ-260Ех

Рисунок А.1. Соединительный кабель №1 для подключения к ИКСУ ТП типа ТХА при работе в режиме измерения температуры, а также для связи с устройствами в режиме воспроизведения сигналов от указанного типа ТП

Рисунок А.2. Соединительный кабель №2 для подключения к ИКСУ ТП типа ТХК при работе в режиме измерения температуры, а также для связи с устройствами в режиме воспроизведения сигналов от указанного типа ТП

Рисунок А.3. Соединительный кабель №3 для связи ИКСУ с ТС по трехпроводной схеме подключения при работе в режиме измерения температуры и сопротивления постоянному току

Рисунок А.4. Соединительный кабель №4 для связи ИКСУ с устройствами по четырехпроводной, трехпроводной и двухпроводной схеме подключения в режиме воспроизведения сигналов от ТС и сопротивления постоянному току

Рисунок А.5. Соединительный кабель №5 для связи ИКСУ с первичными преобразователями или устройствами при работе в режиме измерений напряжения постоянного тока, а также воспроизведения сигналов напряжения постоянного тока

Рисунок А.6. Соединительный кабель №6 для связи ИКСУ с устройствами при работе в режимах измерения и воспроизведения сигналов в виде силы постоянного тока с внутренним блоком питания 24 В

Рисунок А.7. Соединительный кабель №7 для связи ИКСУ с устройствами при работе в режимах измерения и воспроизведения сигналов в виде силы постоянного тока с внешним блоком питания 24 В

Рисунок А.8. Соединительный кабель №8 для связи ИКСУ с устройствами при тестировании реле в режимах *симуляции* и *поверки* ПД

Рисунок А.9. Модуль интерфейсный для связи ИКСУ с ПК

Приложение Б

Пример записи обозначения при заказе ИКСУ-260

<u>ИКСУ-260 X X X X</u> <u>1</u> <u>2</u> <u>3</u> <u>4</u> <u>5</u>

- 1. Тип прибора
- 2. Вариант исполнения:
 - общепромышленное (Базовое исполнение)
 - взрывозащищенное (Ex)
- 3. Программное обеспечение (опция)*:
 - АРМ ИКСУ 260
- 4. Наличие дополнительных кабелей (опция таблица Б.1)
- 5. Обозначение технических условий (ТУ 4381-072-13282997-07)

П р и м е ч а н и е — * В базовый комплект поставки входит компакт-диск с триалверсией программы «Автоматизированное рабочее место ИКСУ-260» («АРМ ИКСУ-260»). После оплаты «АРМ ИКСУ 260» высылается ключ для активации программы.

ПРИМЕР ЗАКАЗА

 $\frac{\textit{\textsf{UKCY-260}}}{1} - \frac{\textit{\textsf{Ex}}}{2} - \frac{\textit{\textsf{APM UKCY 260}}}{3} - \frac{\textit{\textsf{KU26012}}}{4} - \frac{\textit{\textsf{TY 4381-072-13282997-07}}}{5}$

Продолжение приложения Б

Таблица Б.1 –Соединительные кабели

Номер кабеля, назначение	Код при дополни- тельном заказе		
№1 — кабель для подключения ИКСУ-260 к ТП типа ТХА (К) в режимах измерения и воспроизведения*	КИ260К		
№2 — кабель для подключения ИКСУ-260 к ТП типа ТХК (L) в режимах измерения и воспроизведения*	КИ260L		
№3 — кабель для подключения ИКСУ-260 к ТС по трехпровод- ной схеме в режимах измерения температуры и сопротивления*	КИ260R1		
№4 — кабель для подключения ИКСУ-260 к ТС по четырехпро- водной, трехпроводной и двухпроводной схеме в режимах вос- произведения температуры и сопротивления*	КИ260R2		
№5 — кабель для подключения ИКСУ-260 к устройствам в режи- мах измерения и воспроизведения напряжения*	КИ260U		
№6 — кабель для подключения ИКСУ-260 к устройствам в режи- мах измерения и воспроизведения сигналов в виде силы посто- янного тока с внутренним блоком питания 24 В*	КИ26012		
№7 — кабель для подключения ИКСУ-260 к устройствам в режи- мах измерения и воспроизведения сигналов в виде силы посто- янного тока с внешним блоком питания 24 В*	КИ260I1		
№8 — кабель для подключения ИКСУ-260 к устройствам при те- стировании реле в режимах симуляции и поверки датчиков дав- ления (ДД)*	КТ		
Модуль интерфейсный для подключения ИКСУ-260 к ПК (через USB-порт)*	МИГР-05U-1		
Кабель для подключения ПДЭ-010 к ИКСУ-260	К1		
Модуль интерфейсный для питания и подключения ПДЭ-010 к ПК (через USB-порт)	МИГР-05U-2		
Кабель для подключения ИКСУ-260 к ТП типа ТЖК (J) в режимах измерения и воспроизведения	КИ260Ј		
Кабель для подключения ИКСУ-260 к ТП типа ТПР (В) в режимах измерения и воспроизведения	КИ260В		
Кабель для подключения ИКСУ-260 к ТП типа ТПП (S) в режимах измерения и воспроизведения	КИ260S		
Кабель для подключения ИКСУ-260 к ТП типа ТВР (А-1) в режи- мах измерения и воспроизведения	КИ260А		
Кабель для подключения ИКСУ-260 к ТП типа ТМК (Т) в режимах измерения и воспроизведения	КИ260Т		
Кабель для подключения ИКСУ-260 к ТП типа ТНН (N) в режимах измерения и воспроизведения	КИ260N		
Ответная часть разъема PLT-164-PG (для самостоятельного из- готовления кабелей)	PLT164		
Ответная часть разъема PLT-168-PG (для самостоятельного из- готовления кабелей)	PLT168		
Примечание – * входит в базовый комплект поставки ИКСУ-2	60.		

	Номера листов (страниц)				Всего		Входящий сопро -	Пол-	
Изм.	изменен- ных	заменен- ных	новых	аннули - рован - ных	листов (стр .) в до- кум.	Докум .	водитель- ного до- кум. и дата	пись	Дата

Лист регистрации изменений