Texническое описание **Liquiphant FTL41**

Вибрационный

Датчик предельного уровня жидкостей

Область применения

- Датчик предельного уровня любого типа жидкостей для установки в резервуарах и трубопроводах, в том числе во взрывоопасных зонах.
- Диапазон температур процесса: −40 до +150 °C (−40 до +302 °F).
- Давление до 40 бар (580 фунт/кв. дюйм).
- Вязкость до 10000 мПа·с.
- Идеальная замена поплавковым датчикам, так как надежность измерения вибродатчиков не зависит от скорости потока, вихреобразования, наличия пузырьков воздуха, пены, вибрации, твердых частиц или налипаний.

Преимущества

- Калибровка не требуется: быстрый и низкозатратный ввод в эксплуатацию.
- Конструкция соответствует стандартам ASME B31.3 и CRN.
- Отсутствие деталей с механическим приводом: нет необходимости в техническом обслуживании, отсутствует износ, длительный срок службы.
- Функциональная безопасность: мониторинг частоты колебаний вибрационной вилки.
- Метка RFID TAG простая идентификация точки измерения и упрощенный доступ к данным.

Содержание

О настоящем документе	4 /	Влияние плотности среды (при комнатной температуре	11
CNWROUP	4	и нормальном давлении)	11
Принцип действия и архитектура системы	5		
Определение предельного уровня	5	Монтаж	12
Принцип измерения	5	Место монтажа, установочное положение	12
Измерительная система	5	Руководство по монтажу	12
		Руководствуйтесь отметками	
Вход	5	Сварной переходник с отверстием для утечек	
Измеряемая величина		Скользящие муфты	
Диапазон измерения		Выравнивание кабельного ввода	
Выход	5		
Варианты выходов и входов		Окружающая среда	
Выходной сигнал	6	Диапазон температур окружающей среды	
Данные по взрывозащищенному подключению	6	Температура хранения	
daminic no populo admidicinio my nodiono activito		Влажность	
•		Рабочая высота	
3-проводное соединение постоянного тока –	_	Климатический класс	
PNP (электронная вставка FEL42)		Степень защиты	
Напряжение питания		Вибростойкость	
Потребляемая мощность		Ударопрочность	
Потребление тока	6	Механические нагрузки	
Ток нагрузки		Электромагнитная совместимость	1/
Остаточный ток			
Остаточное напряжение		Процесс	
Поведение сигнального выхода		Диапазон температуры процесса	
Назначение клемм	′	Термический удар	
поведение переключающего выхода и сигнальных светодиодов	7	Диапазон значений рабочего давления	
светодиодов	′	Давление при испытании	
		Плотность	
Универсальное токовое соединение с		Герметичность под давлением	18
релейным выходом (электронная вставка			
FEL44)		Механическая конструкция	18
Напряжение питания		Конструкция, размеры	18
Потребляемая мощность		Размеры	19
Подключаемая нагрузка		Macca	
Поведение сигнального выхода		Материалы	
Назначение клемм	8	Шероховатость поверхности	25
Поведение переключающего выхода и сигнальных			
светодиодов	9	Управление	25
		Концепция управления	25
2-проводное соединение NAMUR > 2,2 мA/	_	Элементы управления на электронной вставке	26
< 1,0 мА (электронная вставка FEL48)	9	Клеммы	26
Напряжение питания	9	Локальное управление	26
Поведение сигнального выхода		Сертификаты и нормативы	27
Назначение клемм	10	Маркировка СЕ	
Поведение переключающего выхода и сигнальных		Маркировка ССМ-Тіск	27
светодиодов	10	Маркировка ксім тіск	27
		Защита от перелива	
Рабочие характеристики	10	Сертификаты морского регистра	
Идеальные рабочие условия		Сертификат CRN	
Максимальная точность измерения		Отчеты об испытаниях	
_	11	Директива для оборудования, работающего под	20
-	11	давлением	28
-	11	U	ے د
1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Технологическое уплотнение в соответствии с ANSI/	
ISA 12.27.01	28
Символ RoHS для Китая	28
RoHS	28
Дополнительные сертификаты	28
ASME B 31.3	29
Информация о заказе	29
Маркировка	29
Аксессуары	29
Аксессуары для прибора	29
Скользящие муфты для работы в вакууме	30
Скользящие муфты для использования в условиях	
высокого давления	31
Сопроводительная документация	33
Сопроводительная документация	33
Сопроводительная документация для различных	
приборов	33

О настоящем документе

Символы

Символы техники безопасности

Λ ΟΠΑCΗΟ

Этот символ предупреждает об опасной ситуации. Если не предотвратить такую ситуацию, она приведет к серьезной или смертельной травме.

№ ОСТОРОЖНО

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к серьезной или смертельной травме.

№ ВНИМАНИЕ

Этот символ предупреждает об опасной ситуации. Если не предотвратить эту ситуацию, она может привести к травме легкой или средней степени тяжести.

УВЕДОМЛЕНИЕ

Этот символ содержит информацию о процедурах и других данных, которые не приводят к травмам.

Электротехнические символы

<u> </u>
 ∃аземление

Заземленный зажим, который заземляется через систему заземления.

Защитное заземление (РЕ)

Клеммы заземления, которые должны быть подсоединены к заземлению перед выполнением других соединений. Клеммы заземления расположены на внутренней и наружной поверхностях прибора.

Описание информационных символов

✓ Разрешено

Обозначает разрешенные процедуры, процессы или действия.

Запрещено

Означает запрещенные процедуры, процессы или действия.

Рекомендация

Указывает на дополнительную информацию.

- 📵 Ссылка на документацию
- 🖺 Ссылка на другой раздел
- 1., 2., 3. Серия шагов

Символы на рисунках

А, В, С ... Вид

1, 2, 3 ... Номера пунктов

🗽 Взрывоопасная зона

🔉 Безопасная зона (невзрывоопасная зона)

Принцип действия и архитектура системы

Определение предельного уровня

Определение максимального или минимального уровня жидкостей в резервуарах или трубопроводах в любой промышленности. Подходит для мониторинга утечек, защиты от работы всухую, защиты насосов и защиты от перелива, например,.

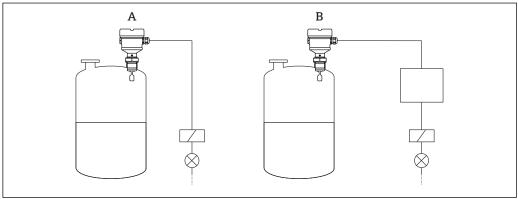
Специсполнения подходят для взрывоопасных зон.

Датчик предельного уровня осуществляет мониторинг одного из состояний вибрационной вилки (погружена в среду и не погружена).

Как в режиме MIN (обнаружение минимального уровня), так и в режиме MAX (обнаружение максимального уровня) датчик может находиться в одном из двух состояний: ОК и режим аварийного управления.

OΚ

- В режиме MIN, вилка погружена в среду, например, защита от работы всухую.
- В режиме МАХ, вилка не погружена в среду, например, защита от перелива.


Режим аварийного управления

- В режиме MIN, вилка не погружена в среду, например, защита от работы всухую.
- В режиме МАХ, вилка погружена в среду, например, защита от перелива.

Принцип измерения

Вибрационная вилка датчика осуществляет колебания на собственной частоте. Как только уровень жидкости поднимается выше вибрационной вилки, виброустойчивость снижается. Изменение частоты колебаний приводит к срабатыванию датчика предельного уровня.

Измерительная система

A0035308

- 🗷 1 Пример измерительной системы
- А Прибор для прямого подключения нагрузки
- В Прибор для подключения через отдельное коммутационное устройство или ПЛК

Вход

Измеряемая величина

Уровень (предельный уровень), защита в режиме MAX или MIN.

Диапазон измерения

Зависит от места установки и наличии в заказе удлинительной трубки.

Выход

Варианты выходов и входов

Электронные вставки

- 3-проводное соединение постоянного тока PNP (FEL42)
- Исполнение с трехпроводным соединением постоянного тока.
- Переключение нагрузки через транзистор (PNP) и отдельное соединение, например, вместе с программируемыми логическими контроллерами (ПЛК).

Универсальное токовое соединение, релейный выход (FEL44)

Переключение нагрузки через 2 плавающих двусторонних контакта.

2-проводное соединение NAMUR > 2,2 мA/< 1,0 мA (FEL48)

- Для отдельного коммутационного устройства.
- Переход сигнала с нижнего уровня на верхний 2,2-3,8/0,4-1,0 мА по стандарту EN 60947-5-6 (NAMUR) по двухпроводному кабелю.

Выходной сигнал

Переключающий выход

Предварительно заданное время переключения для датчиков предельного уровня может быть заказано для следующих зон:

- 0,5 секунды, когда вибрационная вилка погружена, и 1 секунда, когда вибрационная вилка не погружена (заводская настройка);
- 0,25 секунды, когда вибрационная вилка погружена, и 0,25 секунды, когда вибрационная вилка не погружена (настройка максимально быстрого переключения);
- 1,5 секунды, когда вибрационная вилка погружена, и 1,5 секунды, когда вибрационная вилка не погружена;
- 5 секунд, когда вибрационная вилка погружена, и 5 секунд, когда вибрационная вилка не погружена.

Данные по взрывозащищенному подключению

См. указания по технике безопасности (ХА): все данные по взрывозащите приводятся в отдельной документации и могут быть загружены с сайта компании Endress+Hauser. Документация по взрывозащите поставляется в комплекте со всеми приборами, предназначенными для использования во взрывоопасных зонах.

3-проводное соединение постоянного тока – PNP (электронная вставка FEL42)

- Исполнение с трехпроводным соединением постоянного тока.
- Переключение нагрузки через транзистор (PNP) и отдельное соединение, например, вместе с программируемыми логическими контроллерами (ПЛК), DI-модули в соответствии со стандартом EN 61131-2.

Напряжение питания

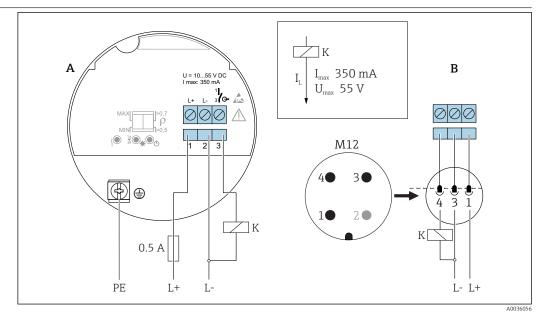
▲ ОСТОРОЖНО

Использование нерегламентированного источника питания

Опасность поражения электрическим током с угрозой для жизни!

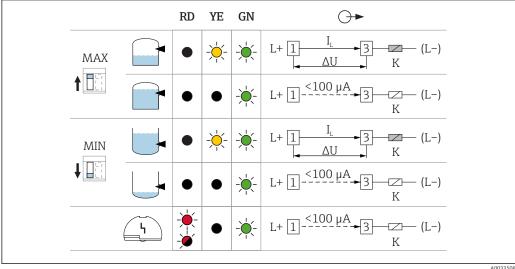
▶ Электронная вставка FEL42 должна получать электропитание исключительно от гальванически развязанных источников в соответствии с МЭК 61010-1.

U = 10 до 55 В пост. тока


Соблюдайте следующие требования в соответствии с МЭК/EN61010-1: предусмотрите пригодный для этой цели прерыватель цепи и ограничьте величину тока значением 500 мА, например посредством подключения предохранителя номиналом 0,5 A (с задержкой срабатывания) к цепи источника питания.

Потребляемая мощность $P < 0,5 \, BT$ Потребление тока $I \le 10 \, \text{мA}$ (без нагрузки). В случае перегрузки или короткого замыкания мигает красный светодиод. Проверка наличия перегрузки или короткого замыкания каждые пять секунд. Ток нагрузки $I \le 350 \, \text{мA}$ Остаточный ток $I < 100 \, \text{мкA}$ (для заблокированного транзистора). Остаточное напряжение $U < 3 \, \text{B}$ (для датчика с переключением через транзистор).

Поведение сигнального выхода


- Состояние ОК: переключается.
- Режим аварийного управления: заблокировано.
- Аварийный сигнал: заблокировано.

Назначение клемм

- **₽** 2 Назначение клемм электронной вставки FEL42
- Α Назначение клемм на электронной вставке
- В Назначение клемм на разъеме М12

Поведение переключающего выхода и сигнальных светодиодов

Модель переключения электронной вставки FEL42, сигнального светодиода

MAXDIP-переключатель для настройки отказоустойчивого режима MAX MIN DIP-переключатель для настройки отказоустойчивого режима MIN

- RD Красный светодиод для предупреждающих и аварийных сигналов
- Желтый светодиод для индикации состояния переключения
- Зеленый светодиод для индикации рабочего состояния, прибор включен
- Протекающий ток нагрузки

Универсальное токовое соединение с релейным выходом (электронная вставка FEL44)

- Переключение нагрузки через 2 плавающих двусторонних контакта.
- Два отдельных двусторонних контакта (DPDT).

▲ ОСТОРОЖНО

В случае неисправности электронная вставка может сильно нагреваться и при касании провоцировать ожоги.

▶ В случае неисправности не дотрагивайтесь до электронных компонентов!

Напряжение питания

U= 19 до 253 В пер. тока / 19 до 55 В пост. тока

Соблюдайте следующие требования в соответствии с МЭК/EN61010-1: предусмотрите пригодный для этой цели автоматический выключатель и ограничьте величину тока значением 500 мА, например, посредством подключения предохранителя номиналом 0,5 А (с задержкой срабатывания) к фазовому проводу цепи источника питания (не к нейтрали).

Потребляемая мощность

P < 25 BA, < 1,3 BT

Подключаемая нагрузка

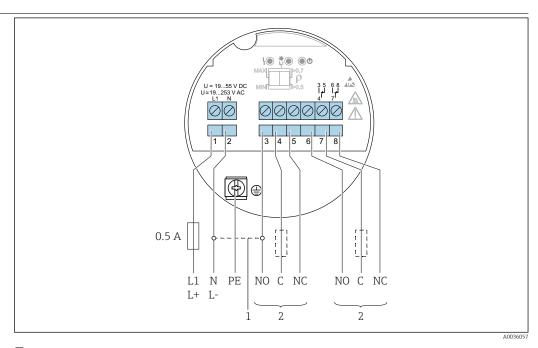
Переключение нагрузки через 2 плавающих двусторонних контакта (DPDT):

- $I_{\text{перем. ток}} \le 6 \text{ A (Ex de 4 A)}$, $U^{\sim} \le \text{перем. ток 253 B; } P^{\sim} \le 1500 \text{ BA, } \cos \phi = 1, P^{\sim} \le 750 \text{ BA, } \cos \phi > 0.7;$
- $I_{\text{пост. ток}} \le 6$ A (Ex de 4 A) до пост. тока 30 B, $I_{DC} \le 0.2$ A до 125 B.

В соответствии с МЭК 61010 применяется следующее правило: суммарное напряжение релейных выходов и источника питания ≤ 300 В.

Предпочтительно использование электронной вставки FEL42 постоянный ток - PNP с небольшими нагрузками для подключения к ПЛК.

Материал изготовления контактов реле: серебро/никель AgNi 90/10.

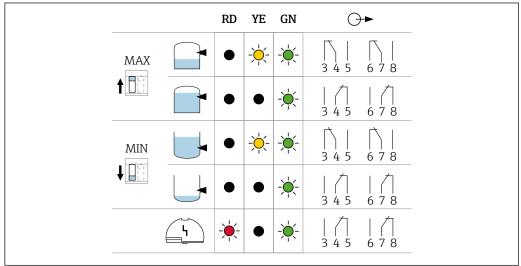

При подключении прибора с высокой индуктивностью предусмотрите искрогасительные средства для защиты контактов реле. Плавкий предохранитель (в зависимости от подключенной нагрузки) защищает контакты реле в случае короткого замыкания.

Оба контакта реле переключаются одновременно.

Поведение сигнального выхода

- Состояние ОК: реле находится под напряжением.
- Режим аварийного управления: реле обесточено.
- Аварийный сигнал: реле обесточено.

Назначение клемм



🖻 4 Универсальное токовое соединение с релейным выходом, электронная вставка FEL44

- 1 В случае соединения перемычкой релейный выход работает по схеме транзистора NPN
- 2 Подключаемая нагрузка

8

Поведение переключающего выхода и сигнальных светодиодов

Δ0033513

🗷 5 Поведение переключающего выхода и сигнальных светодиодов

MAXDIP-переключатель для настройки отказоустойчивого режима MAX MIN DIP-переключатель для настройки отказоустойчивого режима MIN

- RD Красный светодиод аварийного сигнала
- ҮЕ Желтый светодиод для индикации состояния переключения
- GN Зеленый светодиод для индикации рабочего состояния, прибор включен

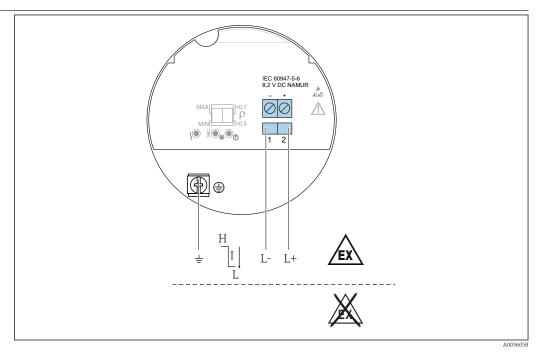
2-проводное соединение NAMUR > 2,2 мA/< 1,0 мA (электронная вставка FEL48)

- Для подключения к изолирующему повторителю в соответствии с NAMUR (МЭК 60947-5-6), например, Nivotester FTL325N производства компании Endress+Hauser.
- Переход сигнала с нижнего уровня на верхний 2,2 до 3,8 мА/0,4 до 1,0 мА в соответствии с МЭК 60947-5-6 (NAMUR) по двухпроводному кабелю.

Напряжение питания

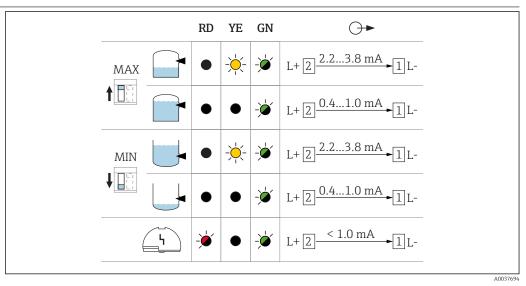
U = 8,2 В пост. тока

Соблюдайте следующие требования в соответствии с МЭК/EN61010-1: предусмотрите пригодный для этой цели автоматический выключатель.


Потребляемая мощность

Р < 50 мВт

Поведение сигнального выхода


- Состояние ОК: ток 2,2 до 3,8 мА.
- Режим аварийного управления: ток 0,4 до 1,0 мА.
- Аварийный сигнал: ток 0,4 до 1,0 мА.

Назначение клемм

🖲 6 2-проводное соединение NAMUR > 2,2 мA/< 1,0 мA, электронная вставка FEL48

Поведение переключающего выхода и сигнальных светодиодов

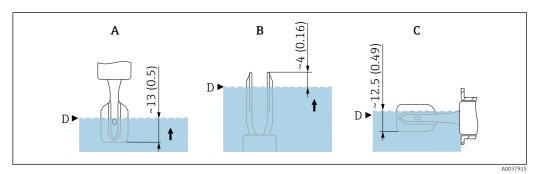
🛮 7 Модель переключения электронной вставки FEL48 и режимы светодиодов

MAXDIP-переключатель для настройки отказоустойчивого режима MAX MIN DIP-переключатель для настройки отказоустойчивого режима MIN

- RD Красный светодиод аварийного сигнала
- YE Желтый светодиод для индикации состояния переключения
- GN Зеленый светодиод для индикации рабочего состояния, прибор включен

Рабочие характеристики

Идеальные рабочие условия


- Температура окружающей среды: 23 °C (73 °F).
- Температура процесса: 23 °C (73 °F).
- Плотность (вода): 1 г/см³.
- Вязкость среды: 1 мПа·с.
- Рабочее давление: давление окружающей среды/вакуум.
- Монтаж датчика: вертикально сверху.
- Переключение в зависимости от плотности: > 0,7 г/см³ (SGU).
- Режим переключения датчика: вилка не погружена вилка погружена.

10

Учет особенностей точки переключения

Стандартные точки переключения, в зависимости от установочного положения датчика предельного уровня

(вода +23 °С (+73 °F))

₽ 8 Стандартные точки переключения. Единица измерения мм (дюйм)

- Α
- В Монтаж снизу
- С Монтаж сбоку
- D Точка переключения

Максимальная точность
измерения

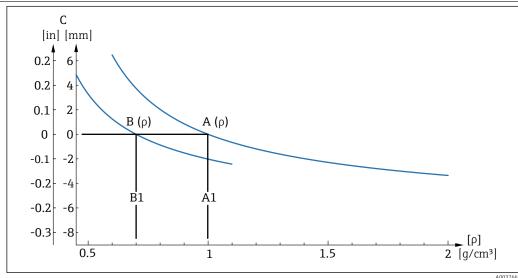
Эталонные рабочие условия: макс. ±1 мм (0,04 дюйм)

Гистерезис

Стандартно 2,5 мм (0,1 дюйм)

Неповторяемость

2 мм (0,08 дюйм)


Влияние температуры процесса

Точка переключения перемещается в интервале +1,4 до -2,6 мм (+0,06 до -0,1 дюйм) при диапазоне температуры от -50 до +150 °C (-58 до +302 °F).

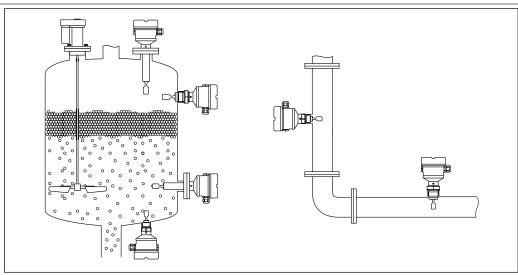
Влияние рабочего давления

Точка переключения перемещается в интервале 0 до 2,6 мм (0 до 0,1 дюйм) при диапазоне давления от -1 до +64 бар (14,5 до 928 фунт/кв. дюйм).

Влияние плотности среды (при комнатной температуре и нормальном давлении)

- ₩ 9 Отклонение точки переключения под влиянием плотности
- Α Настройка переключения в зависимости от плотности (ρ) > 0,7
- Α1 Эталонное рабочее условие $\rho = 1 \ r/cm^3$
- В Настройка переключения в зависимости от плотности (ρ) > 0,5
- B1Эталонное рабочее условие $\rho = 0.7 \text{ г/см}^3$
- Отклонение точки переключения

Настройка плотности

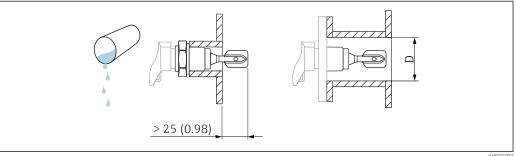

- По параметру ТК , [мм/10 k]:
 - $\rho > 0.7: -0.2;$
 - $\rho > 0.5: -0.2;$
- По давлению , [мм/10 бар]:
 - $\rho > 0.7: -0.3;$
 - $\rho > 0.5$: -0.4;

Монтаж

i

Вскрывайте упаковку прибора только в сухом помещении!

Место монтажа, установочное положение

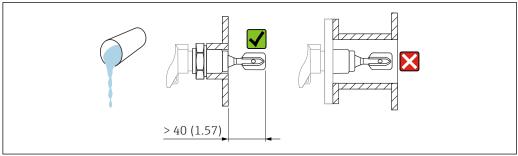

🗉 10 Установка в любом положении в резервуаре, трубопроводе или цистерне

A003695

Руководство по монтажу

Учет вязкости

Низкая вязкость



A0033297

- 🖻 11 Пример монтажа для жидкостей с низкой вязкостью. Единица измерения мм (дюйм)
- D Диаметр монтажного патрубка: минимум 50 мм (2,0 дюйм)
- Низкая вязкость, например, вода: < 2000 мПа·с.
 Возможна установка вибрационной вилки в монтажном патрубке.

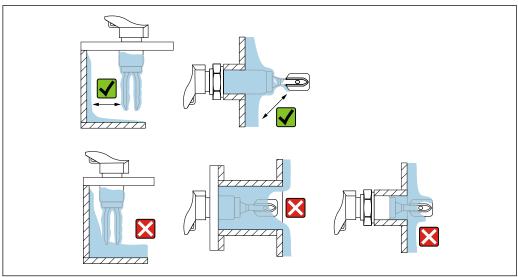
12

Высокая вязкость

A0037348

🗷 12 Пример монтажа для жидкостей с высокой вязкостью. Единица измерения мм (дюйм)

УВЕДОМЛЕНИЕ

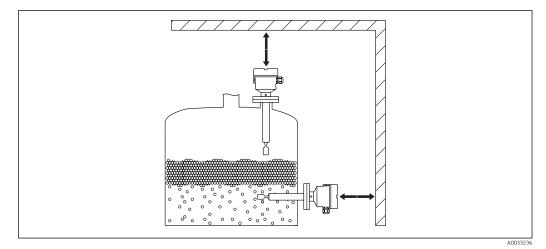

Жидкости с высокой вязкостью могут провоцировать задержку переключения.

- ▶ Убедитесь в том, что жидкость может легко стекать с вибрационной вилки.
- Зачистите поверхность патрубка.
- i

Высокая вязкость, например , вязкие масла: < 10 000 мПа·с.

Вибрационная вилка не должна устанавливаться в монтажном патрубке!

Предотвращение налипания

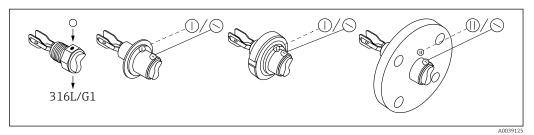

🗉 13 Пример монтажа для сред с более высокой вязкостью

- Используйте короткие монтажные патрубки, чтобы вибрационная вилка свободно выступала из него при установке в резервуаре.
- Предпочтителен монтаж заподлицо в резервуарах или трубопроводах.
- Оставьте достаточное расстояние от вибрационной вилки до стенки резервуара на случай возможного налипания.

Endress+Hauser 13

A0033239

Предусмотрите свободное пространство

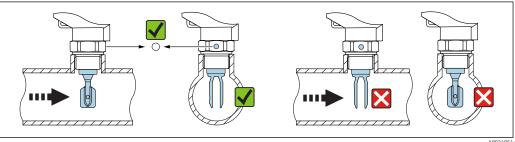


Предусмотрите свободное пространство

Оставьте достаточное место снаружи резервуара для монтажа, подсоединения и настройки с использованием электронной вставки.

Руководствуйтесь отметками

Выровняйте вибрационную вилку в соответствии с отметкой

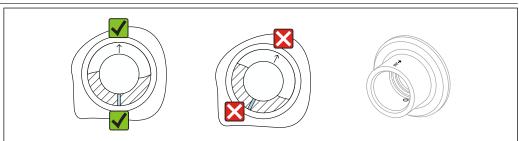

■ 15 Отметки для выравнивания вибрационной вилки

С помощью отметок вибрационная вилка может быть выровнена таким образом, чтобы среда легко стекала с нее, не образуя налипаний.

Отметками могут служить:

- спецификация материала, описание резьбы или круг на шестигранной гайке или приварной
- символ II с задней стороны фланца или на креплении Tri-Clamp.

Монтаж в трубопроводах


■ 16 Монтаж в трубопроводах

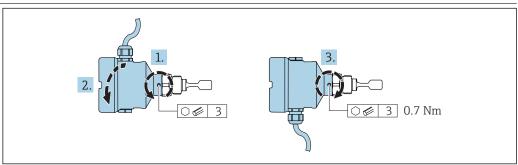
Скорость потока до 5 м/с при вязкости 1 мПа·с и плотности 1 г/см³ (SGU). Проверьте работоспособность датчика при других свойствах среды.

Поток не будет существенно сдерживаться, если вибрационная вилка будет правильно выровнена, отметка на адаптере будет смотреть в направлении потока.

Отметка на адаптере видна, когда адаптер установлен.

Сварной переходник с отверстием для утечек

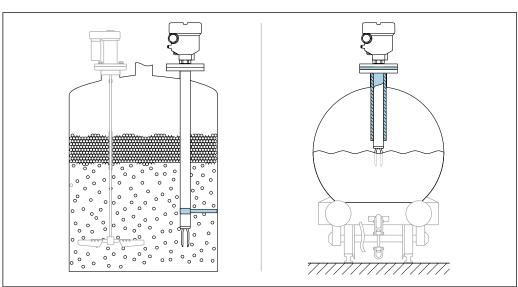
A0039230


■ 17 Сварной переходник с отверстием для утечек

Приварите горловину таким образом, чтобы отверстие для утечек смотрело вниз. Это позволит быстро обнаруживать любую утечку.

Скользящие муфты

🗎 См. раздел «Аксессуары».


Выравнивание кабельного ввода

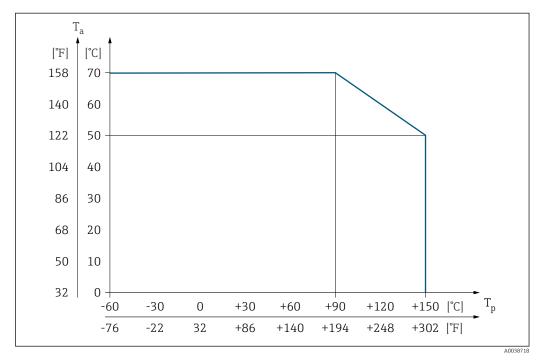
■ 18 Корпус с наружным стопорным винтом

Специальные инструкции по монтажу

Организация опоры для прибора

■ 19 Опора на случай динамических нагрузок

Организуйте прибору опору в случае сильных динамических нагрузок. Максимальная боковая нагрузочная способность удлинительных трубок и датчиков: 75 Нм (55 фунт сила фут).


Окружающая среда

Диапазон температур окружающей среды

-40 до +70 °C (-40 до +158 °F)

Во взрывоопасной зоне допустимая температура окружающей среды может быть ограничена в зависимости от типа зоны и группы газа. Изучите информацию в документации по взрывозащите (XA).

-20 °C (-4 °F)Минимально допустимая температура окружающей среды для пластмассового корпуса ограничена значением ; для Северной Америки, относится к использованию датчиков внутри помещений.

 \blacksquare 20 — Для температуры процесса и вставки FEL44 $T_p > 90^\circ$ макс. ток нагрузки 4 A

Эксплуатация снаружи помещений при сильном солнечном свете:

- прибор следует установить в затененном месте;
- предотвратите попадание на прибор прямых солнечных лучей, особенно в регионах с жарким климатом;
- используйте защитный козырек, который можно приобрести в качестве аксессуара.

Температура хранения

-40 до +80 °C (-40 до +176 °F) опционально: -52 °C (-62 °F), -60 °C (-76 °F).

Влажность

Рабочее состояние до 100 %. Не открывайте во взрывоопасной среде.

Рабочая высота

В соответствии с МЭК 61010-1 Ed.3:

- до 2 000 м (6 600 фут) над уровнем моря;
- может быть увеличена до 3 000 м (9 800 фут) над уровнем моря при условии использования защиты от перенапряжения.

Климатический класс

В соответствии с МЭК 60068-2-38 испытание Z/AD.

Степень защиты

Для корпуса с электрическим подключением.

Муфта М20, пластмассовая:

- однокамерное исполнение, пластмасса: IP66/67 NEMA Тип 4X;
- однокамерное исполнение, алюминий: IP66/68 NEMA Тип 4X/6P.

Муфта М20, никелированная латунь:

однокамерное исполнение, алюминий: IP66/68 NEMA Тип 4X/6Р.

Муфта M20, 316L:

однокамерное исполнение, алюминий: IP66/68 NEMA Тип 4X/6P.

- однокамерное исполнение, пластмасса: IP66/67 NEMA Тип 4X;
- однокамерное исполнение, алюминий: IP66/68 NEMA Тип 4X/6P.

Резьба G 1/2:

- однокамерное исполнение, пластмасса: IP66/67 NEMA Тип 4X;
- однокамерное исполнение, алюминий: IP66/68 NEMA Тип 4X/6P.

Резьба NPT 1/2:

однокамерное исполнение, пластмасса: IP66/67 NEMA Тип 4X.

Резьба NPT 3/4:

однокамерное исполнение, алюминий: IP66/68 NEMA Тип 4X/6P.

Разъем М12:

- однокамерное исполнение, пластмасса: IP66/67 NEMA Тип 4X;
- однокамерное исполнение, алюминий: IP66/67 NEMA Тип 4X.

Вибростойкость

В соответствии с МЭК 60068-2-64-2009: $a(CK3) = 50 \text{ м/c}^2$, f = 5 до 2000 Γ ц, t = 3 оси $x \ge y$.

Ударопрочность

В соответствии с МЭК $60068-2-27-2008:300 \text{ m/c}^2 = 30 \text{ qn} + 18 \text{ мс}.$

Механические нагрузки

Допустимая боковая нагрузка

ВСпециальные инструкции по монтажу.

Электромагнитная совместимость

- Электромагнитная совместимость в соответствии с EN 61326 и рекомендациями NAMUR по ЭМС (NE21).
- Требования стандарта EN 61326-3-1 соблюдены.

Процесс

Диапазон температуры процесса


Учитывайте взаимозависимость давления и температуры (см. раздел «Диапазон рабочего давления датчика»).

-40 до +150 °C (-40 до +302 °F)

Термический удар

≤ 120 K/c

Диапазон значений рабочего давления

■ 21 Температура процесса FTL41

▲ ОСТОРОЖНО

Максимальное давление для измерительного прибора определяется наиболее слабым (с точки зрения давления) из выбранных компонентов. Это значит, что необходимо учитывать не только номинальные характеристики датчика, но и присоединения к процессу.

- Характеристики давления см. в разделе, посвященном механической конструкции.
- Работа измерительного прибора допускается только в пределах указанных значений!
- ► В Директиве для оборудования, работающего под давлением (2014/68/EC), используется сокращение «PS». Сокращение «PS» соответствует МРД (максимальному рабочему давлению) измерительного прибора.

Утвержденные значения давления фланцев при более высоких температурах взяты из следующих стандартов:

- рR EN 1092-1: 2005 с учетом свойств термостабильности, материал 1.4435 идентичен материалу 1.4404, который классифицируется как 13E0 в таблице стандарта EN 1092-1. 18.
 Химический состав этих двух материалов может быть одинаковым;
- ASME B 16.5;
- JIS B 2220.

В любом случае выбирается минимальное значение на кривой зависимости параметров прибора и характеристик выбранного фланца.

Диапазон рабочего давления датчиков

PN: 40 бар (580 фунт/кв. дюйм).

Давление при испытании

Превышение давления

PN = 40 бар (580 фунт/кв. дюйм): давление при испытании = 1,5 · PN макс. 60 бар (870 фунт/кв. дюйм), зависит от выбранного присоединения к процессу.

В ходе испытания на давление функционал прибора ограничен.

Механическая целостность гарантируется при давлении, до 1,5 раз превышающем номинальное рабочее давление PN.

Плотность

- Положение переключения > 0,7 г/см³ = в соответствии с выбранной конфигурацией в заказе.
 Стандартная настройка для жидкостей плотностью > 0,7 г/см³.
- Положение переключения > 0,5 г/см³ = может регулироваться с помощью DIPпереключателя.

Для жидкостей плотностью > 0.5 г/см³ до < 0.8 г/см³.

Возможность выбора при заказе: 0,4 г/см³.
 Для жидкостей плотностью > 0,4 г/см³ до < 0,6 г/см³.
 Если выбраза памада опима, мастройка плотности имали

Если выбрана данная опция, настройка плотности неизменно равна $0,4~\mathrm{г/cm^3}$. Дальнейшее изменение настройки невозможно.

Герметичность под давлением

До вакуума

В вакуумных системах упаривания плотность жидкости может падать до крайне низких значений: выберите настройку плотности 0,4.

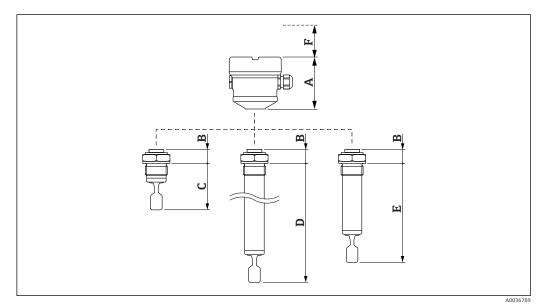
Механическая конструкция

Размеры см. в разделе Product Configurator: www.endress.com

Найдите изделие \rightarrow нажмите кнопку «Configuration» (Конфигурирование) справа от фотографии продукта \rightarrow закончив конфигурирование, нажмите кнопку CAD

Следующие значения размеров являются округленными. По этой причине они могут слегка отличаться от размеров, указанных на веб-сайте www.endress.com.

Конструкция, размеры

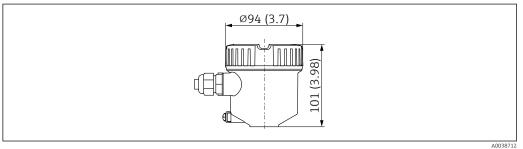

Высота прибора

Высота прибора определяется по следующим компонентам:

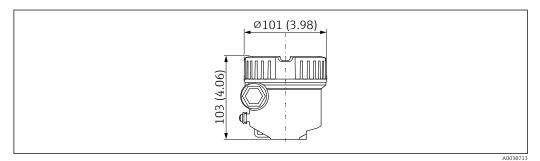
- корпус, включая крышку;
- удлинительная трубка, короткая трубка или компактное исполнение;
- присоединение к процессу.

Размеры по высоте для отдельных компонентов приведены в следующих разделах:

- рассчитайте высоту прибора и прибавьте высоту отдельных компонентов;
- учтите свободное место для монтажа (пространство, необходимое для установки прибора).

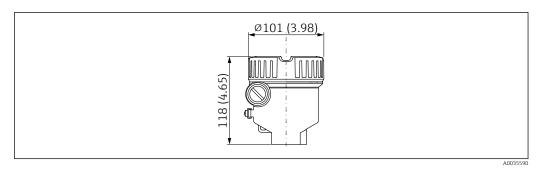

🗷 22 Компоненты, которые используются при расчете высоты прибора

- A Kopnyc
- В Присоединения к процессу
- С Присоединения к процессу
- D Удлинительная трубка
- Е Короткий патрубок
- F Свободное место для монтажа


Размеры

Корпус

Все корпуса могут быть выровнены. Металлические корпуса можно после выравнивания зафиксировать стопорным винтом.


🗷 23 Исполнение корпуса с одной камерой, пластмасса

🗷 24 Исполнение корпуса с одной камерой, алюминий, с покрытием

Endress+Hauser 19

A0038712

25 **2**5 Исполнение корпуса с одной камерой, алюминий, с покрытием, подходит для взрывоопасной зоны

Клемма заземления

- Клемма заземления внутри корпуса, макс. поперечное сечение проводника $2,5 \text{ mm}^2 (14 \text{ AWG}).$
- Клемма заземления снаружи корпуса, макс. поперечное сечение проводника 4 mm² (12 AWG).
- Безопасное экстранизкое напряжение используется для питания электронных вставок; не подключайте защитное заземление.

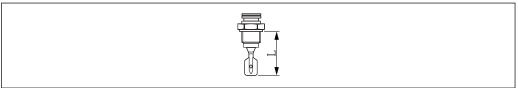
Кабельные уплотнения

Диаметр кабеля

- Никелированная латунь: диам. 7 до 10,5 мм (0,28 до 0,41 дюйм).
- Пластмасса: диам. 5 до 10 мм (0,2 до 0,38 дюйм).

В момент поставки

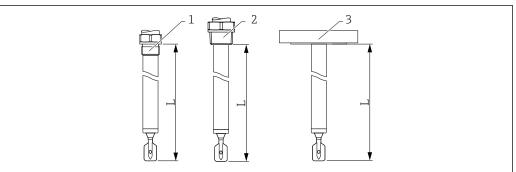
- Одно подсоединенное кабельное уплотнение.
- Одно кабельное уплотнение, загерметизированное глухой заглушкой.


Датчик поставляется с дополнительным кабельным уплотнением для электронных компонентов с реле (не подсоединенным).

Исключения: датчики для взрывоопасной зоны d/XP, допустимы только резьбовые соединения. Приборы во взрывобезопасном исполнении для эксплуатации в Японии имеют в комплекте поставки специальное кабельное уплотнение.

Исполнение зонда

Компактное исполнение

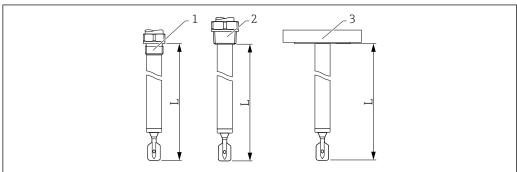

- Материал: 316L.
- Длина датчика L: зависит от присоединения к процессу. См. раздел, посвященный присоединениям к процессу: резьба G, ASME B1.20.3 MNPT, EN10226 R, Tri-Clamp.

Компактное исполнение, длина датчика L

Исполнение: зонд с удлинительной трубкой

Материал: 316L, длины датчиков L: 117 до 2000 мм или 4,6-78,7 дюйма.

VUU3686

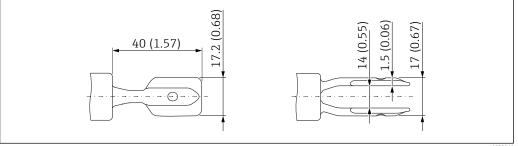

🛮 27 Удлинительная трубка, длина датчика L

- 1 G34, G1
- 2 NPT ¾, NPT 1, R ¾, R 1
- 3 Фланец, Tri-Clamp

Исполнение: зонд с коротким патрубком

Материал: 316L, длина датчика L: зависит от присоединения к процессу:

- фланец = 115 мм (4,53 дюйма);
- резьба G³¼ = 115 мм (4,53 дюйма);
- резьба G 1 = 118 мм (4,65 дюйма);
- резьба NPT, R = 99 мм (3,9 дюйма);
- Tri-Clamp = 115 мм (4,53 дюйма).



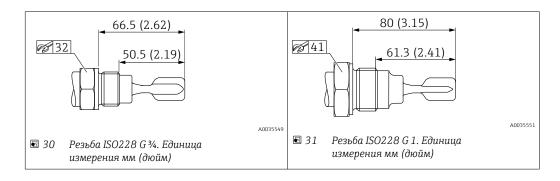
A003686

🗷 28 Короткий патрубок, длина датчика L

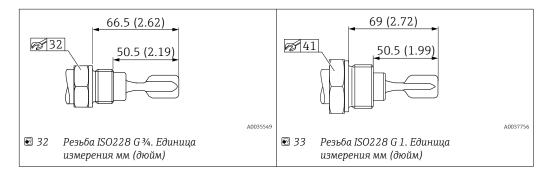
- 1 G 3/4, G 1
- 2 NPT 34, NPT 1, R 34, R 1
- 3 Фланец, Tri-Clamp

Вибрационная вилка

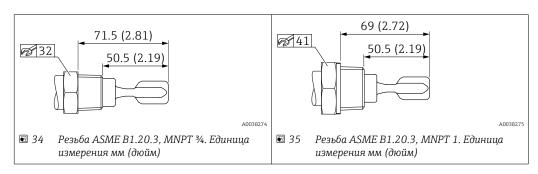
A0038269

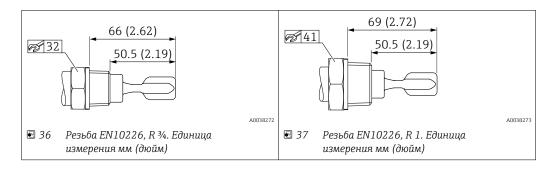

🗷 29 Вибрационная вилка. Единица измерения мм (дюйм)

Присоединения к процессу

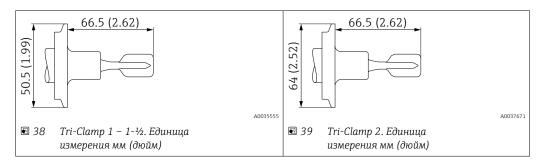

Резьба ISO228 G для установки с помощью приварного адаптера

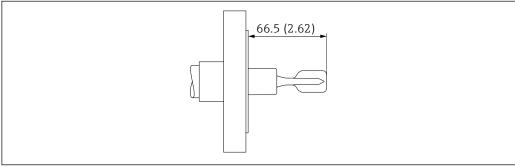
G ¾, G 1 подходит для установки с помощью приварного адаптера.


- Материал: 316L.
- Номинальное давление, температура: ≤ 40 бар (580 psi), ≤ 100 °C (212 °F).
- Номинальное давление, температура: ≤ 25 бар (363 рsi), ≤ 150 °C (302 °F).
- Macca: 0,2 кг (0,44 фунта).
- Принадлежности: сварной переходник.
- 📭 Приварной адаптер не включен в комплект поставки.


Резьба ISO228 G с плоским уплотнением

Резьба ASME B1.20.3, MNPT


Резьба EN10226, R


Tri-Clamp

Исполнение ISO2852 DN25-38 (1 - 1-½), DIN32676 DN25-40

- Материал: 316L.
- Номинальное давление: ≤ 25 бар (363 фунт/кв. дюйм).
- Температура: ≤ 150 °С (302 °F).
- Macca: 0,1 (0,22).
- Максимальные значения температуры и давления зависят от использующегося зажимного кольца и уплотнения. В любом случае применяется минимальное значение.

Размеры датчиков с фланцевым креплением

🛮 40 🛮 Пример с фланцевым креплением. Единица измерения мм (дюйм)

Фланцы ASME B16.5, RJF

Номинальное давление	Тип	Материал	Масса, кг (фунты)
Класс 300	NPS 2"	316/316L	3,2 (7,06)
Класс 300	NPS 4"	316/316L	11,5 (25,6)

Endress+Hauser 23

A0035554

Фланцы EN 1092-1, A

Номинальное давление	Тип	Материал	Масса, кг (фунты)
PN6	DN32	316L (1.4404)	1,2 (2,65)
PN6	DN40	316L (1.4404)	1,4 (3,09)
PN6	DN50	316L (1.4404)	1,6 (3,53)
PN10/16	DN80	316L (1.4404)	4,8 (10,58)
PN10/16	DN100	316L (1.4404)	5,6 (12,35)
PN25/40	DN25	316L (1.4404)	1,3 (2,87)
PN25/40	DN32	316L (1.4404)	2,0 (4,41)
PN25/40	DN40	316L (1.4404)	2,4 (5,29)
PN25/40	DN50	316L (1.4404)	3,2 (7,06)
PN25/40	DN65	316L (1.4404)	4,3 (9,48)
PN25/40	DN80	316L (1.4404)	5,9 (13,01)
PN25/40	DN100	316L (1.4404)	7,5 (16,54)
PN40	DN50	316L (1.4404)	3,2 (7,06)

Фланцы EN 1092-1, B1

Номинальное давление	Тип	Материал	Масса, кг (фунты)
PN6	DN32	316L (1.4404)	1,2 (2,65)
PN6	DN50	316L (1.4404)	1,6 (3,53)
PN10/16	DN100	316L (1.4404)	5,6 (12,35)
PN25/40	DN25	316L (1.4404)	1,4 (3,09)
PN25/40	DN50	316L (1.4404)	3,2 (7,06)
PN25/40	DN80	316L (1.4404)	5,9 (13,01)

Фланцы JIS B2220

Номинальное давление	Тип	Материал	Масса, кг (фунты)
10K	10K 25A	316L (1.4404)	1,3 (2,87)
10K	10K 40A	316L (1.4404)	1,5 (3,31)
10K	10K 50A	316L (1.4404)	1,7 (3,75)

Присоединение к процессу, уплотняемая поверхность

- Резьба ISO228, G
- Резьба ASME, MNPT
- Резьба EN10226, R
- Фланец ASME B16.5, RF (выступающий торец)
- Фланец EN1092-1, форма A

- Фланец EN1092-1, форма В1
 Фланец JIS B2220, RF (выступающий торец)
 Фланец HG/T20592, RF (выступающий торец)
 Фланец HG/T20615, RF (выступающий торец)

Прочее

Macca

См. соответствующий раздел.

Материалы

Материалы, контактирующие с процессом

- Присоединение к процессу: 316L (1.4404 или 1.4435).
- Удлинительная трубка: 316L (1.4404 или 1.4435).
- Плоское уплотнение для присоединения к процессу G ¾ или G 1: фиброармированное эластомерное уплотнение, не содержащее асбест в соответствии с DIN 7603.
- Фланцы, 🗎 механическая конструкция.
- Вибрационная вилка: 316L (1.4435).

Уплотнения

Уплотнение в комплекте поставки:

метрическая резьба G³4, G1 стандарт, плоское уплотнение в соответствии с DIN7603.

Уплотнение, не входящее в комплект поставки:

- Tri-Clamp
- фланцы;
- резьба R и NPT;
- метрическая резьба G ¾, G 1 для установки с помощью приварных адаптеров.

Материалы, не контактирующие с процессом

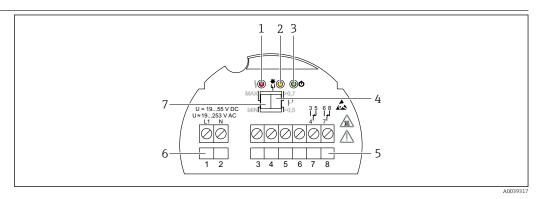
Алюминиевый корпус

- Корпус: Alu-EN AC 44300.
- Глухая крышка: Alu-EN AC 44300.
- Уплотнения крышки: HNBR.
- Табличка с маркировкой: термопластическая пленка, нержавеющая сталь или материал, предоставляемый заказчиком.
- Кабельные уплотнения M20: материал на выбор (нержавеющая сталь, никелированная латунь, полиамид).

Пластмассовый корпус

- Корпус: РВТ/РС.
- Глухая крышка: РВТ/РС.
- Уплотнение крышки: EPDM.
- Выравнивание потенциалов: 316L.
- Уплотнение под системой выравнивания потенциалов: EPDM.
- Разъем: PBT-GF30-FR.
- Кабельное уплотнение M20: PA.
- Уплотнение разъема и кабельное уплотнение: EPDM.
- Адаптер на замену кабельным уплотнениям: 316L.
- Табличка с маркировкой: термопластическая пленка, металл или материал, предоставляемый заказчиком.

Шероховатость поверхности


Шероховатость поверхности, находящейся в контакте с процессом, равна $R_a < 3,2$ мкм (126 мкдюймов).

Управление

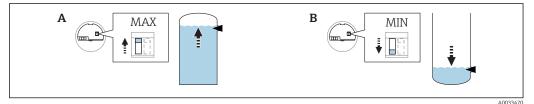
Концепция управления

Управление с помощью DIP-переключателей на электронной вставке.

Элементы управления на электронной вставке

■ 41 Пример: электронная вставка FEL44

- 1 Красный светодиод для предупреждений и аварийных сигналов
- 2 Желтый светодиод для индикации состояния переключения
- 3 Зеленый светодиод, рабочее состояние (зеленый светодиод загорается = прибор включен)
- 4 DIP-переключатель для настройки плотности в диапазоне от 0,7 до 0,5
- 5 Клеммы контактов реле
- 6 Клеммы источника питания
- 7 DIP-переключатель для настройки отказоустойчивого режима MAX/MIN


Клеммы

Клеммы для кабелей с поперечным сечением до $2.5~{\rm km}^2$ ($14~{\rm AWG}$). Используйте наконечники для жил кабелей.

Локальное управление

Управление с помощью электронной вставки

Отказоустойчивый режим MAX/MIN

■ 42 Положение выключателя на электронной вставке для отказоустойчивого режима MAX/MIN

- A MAX (безопасность для максимального уровня)
- В МІП (безопасность для минимального уровня)
- Токовая защита при минимальном/максимальном уровне жидкости может быть включена с помощью электронной вставки.
- MAX = безопасность для максимального уровня: выход переключается в режим аварийного управления, когда вибрационная вилка погружается в жидкость, функция используется, например, для защиты от перелива.
- MIN = безопасность для минимального уровня: выход переключается в режим аварийного управления, когда вибрационная вилка перестает быть погружена в жидкость, функция используется, например, для защиты насосов от работы всухую.

Изменение настройки плотности

🖪 43 — Положение переключателя на электронной вставке для регулировки плотности

Заводская настройка плотности: 0,7.

26 Endress+Hauser

A00334

- Положение переключения > 0,7 г/см³ = в соответствии с выбранной конфигурацией в заказе.
 Стандартная конфигурация для жидкостей плотностью > 0,7 г/см³.
- Положение переключения > 0,5 г/см³ = может регулироваться с помощью DIPпереключателя.

Для жидкостей плотностью > 0.5 г/см³ до < 0.8 г/см³.

Возможность выбора при заказе: 0,4 г/см³.
 Для жидкостей плотностью > 0,4 г/см³ до < 0,6 г/см³.
 Если выбрана данная опция, настройка плотности неизменно равна 0,4 г/см³. Дальнейшее изменение настройки невозможно.

Сертификаты и нормативы

Действующие на данный момент сертификаты и нормативы можно найти в следующих источниках:

- Product Configurator;
- веб-сайт Endress+Hauser: www.endress.com > Downloads.

Маркировка СЕ

Измерительная система полностью удовлетворяет требованиям соответствующих директив ЕС. Эти требования перечислены в декларации соответствия ЕС вместе с применимыми стандартами. Endress+Hauser подтверждает успешное испытание прибора нанесением маркировки СЕ.

Маркировка RCM-Tick

Предлагаемый продукт или измерительная система соответствует требованиям Управления по связи и средствам массовой информации Австралии (ACMA) к целостности сетей, оперативной совместимости, точностным характеристикам, а также требованиям норм охраны труда. В данном случае обеспечивается соответствие требованиям в отношении электромагнитной совместимости. На паспортные таблички соответствующих приборов наносится маркировка RCM-Tick.

A002956

Сертификаты взрывозащиты

Вся информация по взрывозащите приведена в отдельной документации, доступной на сайте в разделе загрузок. Документация по взрывозащите поставляется в комплекте со всеми приборами, предназначенными для использования во взрывоопасных зонах.

Защита от перелива

Перед установкой датчика изучите нормативную документацию WHG (Немецкий федеральный закон о воде).

Одобрено для защиты от перелива и обнаружения утечек.

Информация для заказа: Product Configurator, код заказа «Дополнительное одобрение», опция «LD».

Сертификаты морского регистра

- ABS (Американское бюро судоходства), опция «LF».
- GL (Германский Ллойд)/DNV (Норвежский Веритас), опция «LJ».
- Морской сертификат LR (Регистр Ллойда), опция «LG».
- Морской сертификат BV (Бюро Веритас), опция «LH».

¶ Информация для заказа: Product Configurator, код заказа «Дополнительное одобрение», опцию см. в списке.

Сертификат CRN

Исполнения с сертификатом CRN (Канадский регистрационный номер) перечислены в соответствующей регистрационной документации. Приборам с сертификатом CRN присваивается регистрационный номер.

Любые ограничения максимального рабочего давления указаны в сертификате CRN.

i

Информация для заказа: Product Configurator, код заказа «Сервис», опция «17».

Отчеты об испытаниях

Испытания, отчеты, декларация

Заказу подлежит следующая документация:

- акт осмотра 3.1, EN10204 (сертификат материалов, смачиваемые компоненты);
- ASME ВЗ1.3 Технологические трубопроводы, декларация;
- испытание под давлением, внутренняя процедура, отчет об испытании;
- гелиевый тест на утечки, внутренняя процедура, отчет об испытании;
- идентификационная проверка материалов (PMI), внутренняя процедура (смачиваемые компоненты), отчет испытания.

Сервис

- Очистка от масла+смазки (влажная).
- Без ПКВ (повреждающие краску вещества).
- Требуется указать настройку задержки переключения.
- Настройка отказоустойчивого режима MIN.
- Настройка плотности по умолчанию > 0,4 г/см³.
- Настройка плотности по умолчанию > 0,5 г/см³.
- Бумажная документация (доп. испытания, сертификат, декларация на выбор).

Директива для оборудования, работающего под давлением

Оборудование, работающее под давлением, допустимое давление ≤ 200 бар (2 900 фунт/кв. дюйм)

Приборы для измерения давления с фланцем и резьбовой бобышкой, корпус которых не находится под давлением, не подпадают под действие Директивы по оборудованию, работающему под давлением, независимо от максимального допустимого давления.

Причины:

Согласно статье 2, п. 5 Директивы ЕС 2014/68/ЕU, устройства для работы под давлением определяются как "устройства с рабочей функцией, имеющие корпуса, находящиеся под давлением".

Если прибор для измерения давления не имеет корпуса, находящегося под давлением (камеры высокого давления, которую можно определить как таковую), то, с точки зрения данной Директивы, он не является устройством для работы под давлением.

Технологическое уплотнение в соответствии с ANSI/ISA 12.27.01

Установка технологических уплотнений для датчиков, эксплуатирующихся в странах Северной Америки. В соответствии с ANSI/ISA 12.27.01 конструкция приборов Endress+Hauser предполагает использование одного или двух уплотнений, о чем информирует предупреждающее сообщение. Благодаря этому пользователь может отказаться от использования дополнительного технологического уплотнения (и сэкономить средства, необходимые на его установку) в защитном трубопроводе в соответствии с ANSI/NFPA 70 (NEC) и CSA 22.1 (CEC). Эти приборы соответствуют принципам монтажа, характерным для Северной Америки, и отличаются чрезвычайно безопасной и экономичной установкой в областях применения с высоким давлением и опасными жидкостями. Больше информации приводится в указаниях по технике безопасности (XA) соответствующего прибора.

Алюминиевые и пластмассовые корпуса сертифицированы как приборы с одним уплотнением.

Символ RoHS для Китая

Китайская директива RoHS 1, нормативный акт SJ/T 11363-2006: измерительная система соответствует ограничениям по применяемым веществам согласно Директиве об ограничении использования опасных веществ (RoHS).

RoHS

Измерительная система соответствует ограничениям по применяемым веществам согласно Директиве об ограничении использования опасных веществ 2011/65/EU (RoHS 2).

Дополнительные сертификаты

Соответствие ЕАС

Измерительная система соответствует юридическим требованиям применимых директив EAC. Эти директивы и действующие стандарты перечислены в заявлении о соответствии EAC.

Endress+Hauser подтверждает успешное испытание прибора нанесением маркировки EAC.

ASME B 31.3

Конструкция и материалы соответствуют стандарту ASME B31.3. Приварные соединения являются соединениями сквозного приплавливания и соответствуют требованиям Кода ASME по котлам и сосудам под давлением, Раздел IX и стандарту EN ISO 15614-1.

Информация о заказе

Подробную информацию для оформления заказа можно получить из следующих источников.

- Product Configurator на веб-сайте Endress+Hauser: www.endress.com -> Выберите раздел
 «Corporate» -> Выберите страну -> Выберите раздел «Products» -> Выберите изделие с
 помощью фильтров и поля поиска -> Откройте страницу изделия -> После нажатия кнопки
 «Configure», находящейся справа от изображения изделия, откроется Product Configurator.
- Региональное торговое представительство Endress+Hauser: www.addresses.endress.com.

Конфигуратор – инструмент для индивидуальной конфигурации продукта

- Самые последние опции продукта
- В зависимости от прибора: прямой ввод специфической для измерительной точки информации, например, рабочего диапазона или языка настройки
- Автоматическая проверка совместимости опций
- Автоматическое формирование кода заказа и его расшифровка в формате PDF или Excel

Маркировка

Точка измерения (TAG)

Прибор может быть заказан с маркировкой (TAG).

Расположение маркировки (TAG)

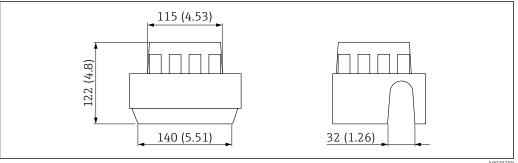
В дополнительной спецификации выберите:

- табличка для маркировки (TAG), нержавеющая сталь;
- термопластическая пленка;
- табличка прилагается заказчиком.

Определение маркировки (TAG)

В дополнительной спецификации выберите:

3 строки, до 18 символов в каждой;


маркировка точки измерения наносится на выбранную табличку (TAG) и/или записывается в RFID-метку.

Аксессуары

Аксессуары для прибора

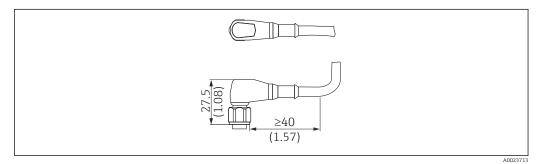
Защитный козырек для корпуса с одним отсеком, металлический

Материал: пластмассаКод заказа: 71438291

🖪 44 🛮 Защитный козырек для корпуса с одним отсеком, металлический. Единица измерения мм (дюйм)

Штепсельный разъем

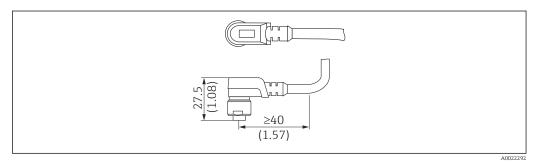
Перечисленные штепсельные разъемы подходят для использования в диапазоне температур -25 до +70 °C (-13 до +158 °F).


Endress+Hauser 29

A00382

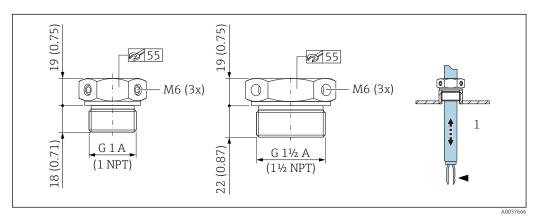
Endress+Hauser

Штепсельный разъем M12 IP69


- Терминированный с одной стороны
- Угловой, 90°
- Кабель ПВХ длиной 5 м (16 фут) (оранжевый).
- Корончатая гайка 316L (1.4435).
- Корпус: ПВХ (оранжевый).
- Код заказа: 52024216

🛮 45 - Штепсельный разъем M12 IP69. Единица измерения мм (дюйм)

Штепсельный разъем М12 IP67


- Угловой, 90°
- ПВХ-кабель 5 м (16 фут) (серый)
- Корончатая гайка Cu Sn/Ni
- Корпус: полиуретан (синий)
- Код заказа: 52010285

■ 46 Штепсельный разъем M12 IP67. Единица измерения мм (дюйм)

Скользящие муфты для работы в вакууме

Точка переключения с бесступенчатой регулировкой.

🖻 47 Скользящие муфты для работы в вакууме. Единица измерения мм (дюйм)

 $1 p_e = 0 6ap (0 psi)$

30

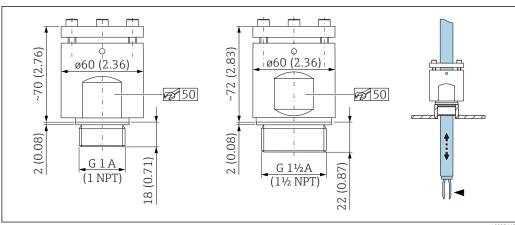
G 1, DIN ISO 228/I

- Материал: 1.4435 (AISI 316L)
- Macca: 0,21 кг (0,46 фунт)
- Код заказа: 52003978
- Код заказа: 52011888, сертификат: с актом осмотра материала EN 10204 − 3.1

NPT 1, ASME B 1.20.1

- Материал: 1.4435 (AISI 316L)
- Macca: 0,21 кг (0,46 фунт)
- Код заказа: 52003979
- Код заказа: 52011889, сертификат: с актом осмотра материала EN 10204 3.1

G 11/2, DIN ISO 228/I


- Материал: 1.4435 (AISI 316L)
- Macca: 0,54 кг (1,19 фунт)
- Код заказа: 52003980
- Код заказа: 52011890, сертификат: с актом осмотра материала EN 10204 − 3.1

NPT 11/2, ASME B 1.20.1

- Материал: 1.4435 (AISI 316L)
- Macca: 0,54 кг (1,19 фунт)
- Код заказа: 52003981
- Код заказа: 52011891, сертификат: с актом осмотра материала EN 10204 3.1

Скользящие муфты для использования в условиях высокого давления

- Точка переключения с бесступенчатой регулировкой.
- Для использования во взрывоопасных зонах.
- Комплект уплотнений из графита.
- Для G 1, G 1½: уплотнение входит в комплект поставки.

 48 Скользящие муфты для использования в условиях высокого давления. Единица измерения мм (дюйм)

G 1, DIN ISO 228/I

- Материал: 1.4435 (AISI 316L)
- Масса: 1,13 кг (2,49 фунт)
- Код заказа: 52003663
- Код заказа: 52011880, сертификат: с актом осмотра материала EN 10204 3.1

G 1, DIN ISO 228/I

- Материал: AlloyC22
- Macca: 1,13 кг (2,49 фунт)
- Сертификат: с актом осмотра материала EN 10204 3.1
- Код заказа: 71118691

NPT 1. ASME B 1.20.1

- Материал: 1.4435 (AISI 316L)
- Macca: 1,13 кг (2,49 фунт)
- Код заказа: 52003667
- Код заказа: 52011881, сертификат: с актом осмотра материала EN 10204 − 3.1

Endress+Hauser 31

A003766

NPT 1, ASME B 1.20.1

- Материал: AlloyC22
- Macca: 1,13 кг (2,49 фунт)
- Сертификат: с актом осмотра материала EN 10204 3.1
- Код заказа: 71118694

G 1½, DIN ISO 228/1

- Материал: 1.4435 (AISI 316L)
- Macca: 1,32 кг (2,91 фунт)
- Код заказа: 52003665
- Код заказа: 52011882, сертификат: с актом осмотра материала EN 10204 − 3.1

G 1½, DIN ISO 228/1

- Материал: AlloyC22
- Macca: 1,32 кг (2,91 фунт)
- Сертификат: с актом осмотра материала EN 10204 3.1

NPT 1½, ASME B 1.20.1

- Материал: 1.4435 (AISI 316L)
- Macca: 1,32 кг (2,91 фунт)
- Код заказа: 52003669
- Код заказа: 52011883, сертификат: с актом осмотра материала EN 10204 3.1

NPT 11/2, ASME B 1.20.1

- Материал: AlloyC22
- Macca: 1,32 кг (2,91 фунт)
- Сертификат: с актом осмотра материала EN 10204 3.1
- Код заказа: 71118695

Сопроводительная документация

Действующие на данный момент сертификаты и нормативы можно найти в следующих источниках:

- Product Configurator;
- веб-сайт Endress+Hauser: www.endress.com → Downloads.

Сопроводительная документация

- ТІОО426F: приварная шейка и фланцы (обзор).
- SD01622F: приварная шейка (руководство по сборке).

Сопроводительная документация для различных приборов

Тип документа: руководство по эксплуатации (ВА)

Монтаж и ввод в эксплуатацию – содержит все функции меню управления, необходимые для выполнения стандартной измерительной задачи. Функции, выходящие за рамки данной цели, не включены.

BA01893F

Тип документа: краткое руководство по эксплуатации (КА)

Быстрое руководство по началу измерения – содержит всю необходимую информацию от приемки до электрического подключения.

KA01411F

Тип документа: указания по технике безопасности, сертификаты

В зависимости от типа сертификата указания по технике безопасности также прилагаются к прибору, например , ХА. Эта документация является составной частью руководства по эксплуатации.

На заводской табличке приведен номер указаний по технике безопасности (XA), относящихся к прибору.

www.addresses.endress.com