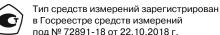


Преобразователи сигналов измерительные нормирующие НПСИ

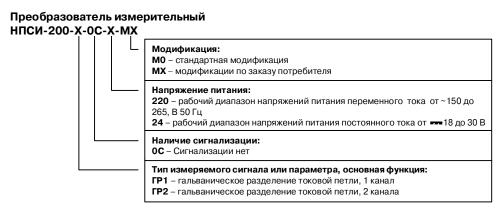

> НПСИ-200-ГР1 НПСИ-200-ГР2

Паспорт

ПИМФ.422189.010 ПС Версия 0.0

Россия, 603107 Нижний Новгород, а/я 21 тел./факс:(831) 260-13-08 (многоканальный)

e-mail: sales@contravt.ru


Содержание

1	Обозначение при заказе	3
2	Назначение	4
3	Технические характеристики	8
4	Комплектность	. 14
5	Размещение и подключение преобразователя	. 15
6	Указание мер безопасности	. 28
7	Правила транспортирования и хранения	. 29
	Гарантийные обязательства	
9	Адрес предприятия-изготовителя	.31
	Свидетельство о приёмке	
Пр	еобразователи сигналов измерительные нормирующие НПСИ серии NNN тодика поверки	
	Отметки в эксплуатации	
	UIMCIRИ В ЭКСІЛІУАІАЦИИ	. 43

Настоящий паспорт предназначен для ознакомления с функциональными возможностями, техническими характеристиками, порядком эксплуатации, техническим обслуживанием и поверкой «Преобразователи сигналов измерительные нормирующие НПСИ серии NNN» НПСИ-200-ГР1, НПСИ-200-ГР2 (в дальнейшем – преобразователи). Преобразователи выпускаются по техническим условиям ПИМФ.422189.001 ТУ. Преобразователи относятся к сертифицированному типу средств измерений «Преобразователи сигналов измерительные нормирующие НПСИ серии NNN».

Внимание! Знак в тексте паспорта указывает на рекомендации, которые необходимо соблюдать, чтобы обеспечить безопасность персонала, безопасную эксплуатацию преобразователя, и не создать условия для выхода прибора из строя.

1 Обозначение при заказе

Пример записи: Преобразователь измерительный **НПСИ-200-ГР1-0C-24-МО,** основная функция – гальваническое разделение токовой петли, 1 канал, сигнализации нет, рабочий диапазон напряжений питания постоянного тока от 18 до 30 В, стандартная модификация.

2 Назначение

Преобразователи измерительные НПСИ-200-ГРх предназначены для трансляции 1:1 сигнала (4...20) мА от источника к приемнику. В системах измерения источником является измерительный датчик (ИД), а приемником – измерительный прибор (ИП), в системах управления – источником – управляющее устройство (УУ), приемником – исполнительное устройство (ИУ).

Главная функция преобразователей – обеспечение гальванической изоляции между источниками и приемниками сигналов (4...20) мА. Это позволяет организовать связь измерительно-управляющих приборов (контроллеры, регуляторы) с датчиками и исполнительными устройствами (электроклапаны, частотные приводы, регуляторы мощности и т.п.), находящимися под разными потенциалами, бороться с сильными электромагнитными помехами в сигнальных цепях и т.д.

Важной особенностью преобразователей является то, что они способны работать как с активными, так с пассивными источниками входных сигналов.

Одноканальный пребразователь НПСИ-200-ГР1-X-X-МХ способен формировать как активный, так и пассивный выходной токовый сигнал. Двухканальные преобразователи формируют только активные выходные токовые сигналы.

Преобразователи могут применяться как разветвители токовых сигналов. Схема подключения преобразователей при их работе в качестве разветвителей приведена в п. 5.2.

Применение многоканальных преобразователей НПСИ-200-ГР2 снижает цену канала по сравнению с одноканальным НПСИ-200-ГР1, позволяет сэкономить место на DIN-рейке и, соответственно, в шкафу управления.

Каналы двухканальных преобразователей полностью независимы, неисправность одного на другой канал никак не влияет.

Рисунок 2.1 – Применение НПСИ-200-ГРх

Выполняемые функции:

- измерение входного унифицированного сигнала постоянного тока (4...20) мА и его преобразование в унифицированный выходной сигнал постоянного тока (4...20) мА;
- возможность подключения как активных, так и пассивных источников токовых сигналов;
- питание источников входного сигнала либо по отдельным проводам, либо через токовую петлю;
- формирование как активного, так и пассивного токового выходного сигнала (в модификациях НПСИ-200-ГР1-X-X-MX);
- гальваническая изоляция входных и выходных цепей между собой и с источником питания, электрическая прочность изоляции ~1500 B, 50 Гц.

Преобразователь рассчитан для монтажа на DIN-рейку по EN 50022 внутри шкафов автоматики и в шкафах низковольтных комплектных устройств.

Преобразователь обеспечивает:

- гальваническую изоляцию между собой входа, выхода, источника питания;
- высокую точность преобразования 0,1 %;
- расширенный диапазон рабочих температур от минус 40 до плюс 70 °C;
- защиту от электромагнитных помех при передаче сигналов на большие расстояния;

- передачу сигнала (4...20) мА на удаленные вторичные приборы по стандартным электротехническим проводам;
 - экономию места в монтажном шкафу ширина корпуса на 1 канал:
 - НПСИ-200-ГР1-X-X-МX 22,5 мм; НПСИ-200-ГР2-X-X-МX – 11,3 мм.
- простой монтаж / демонтаж, обеспечиваемый разъёмными винтовыми клеммами.

Область применения: системы измерения, сбора и регистрации данных, контроля и регулирования в технологических процессах в нефтяной, газовой, химической отраслях промышленности, металлургии, машиностроении, а также научных исследованиях.

3 Технические характеристики

3.1 Метрологические характеристики

3.1.1 Основная погрешность

Пределы основной допускаемой приведенной погрешности преобразования входных унифицированных сигналов постоянного тока (4...20) мА в выходные унифицированные сигналы постоянного тока (4...20) мА не более $\pm 0,1$ % от диапазона преобразования.

3.1.2 Дополнительная погрешность

Пределы дополнительной погрешности преобразователей, вызванные изменением температуры окружающего воздуха от нормальной (23±5) °С до любой температуры в пределах рабочего диапазона, не превышают значения 0,6 предела основной погрешности на каждые 10 °С изменения температуры.

Пределы дополнительной погрешности преобразователей, вызванные изменением сопротивления нагрузки токового выхода от его номинального значения до любого в пределах допустимого диапазона сопротивлений нагрузки, не превышают 0,5 значения предела основной погрешности.

Пределы допускаемой дополнительной погрешности преобразователей, вызванные изменением напряжения питания до любой величины в пределах рабочего диапазона, не превышают 0,5 значения предела основной погрешности.

Пределы дополнительной погрешности преобразователей, вызванные воздействием повышенной влажности 95 % при температуре плюс 35 °C без конденсации влаги, не превышают значения предела основной погрешности.

3.1.3 Интервал между поверками составляет **5 лет.**

Поверка преобразователей производится по ПИМФ.422189.001 МП «Преобразователи сигналов измерительные нормирующие НПСИ серии NNN» приложение А к ПС, утвержденному руководителем ГЦИ СИ ФБУ «Нижегородский ЦСМ».

3.2 Характеристика преобразования

Преобразователь имеет линейно возрастающую характеристику выходного сигнала при изменении входного сигнала.

- **3.2.1** В пределах диапазона линейного преобразования выходной сигнал постоянного тока равен входному с учетом погрешности преобразования.
- 3.2.2 Диапазон линейного преобразования составляет (3,6...22) мА.

3.3 Эксплуатационные характеристики

3.3.1 Номинальное напряжение питания преобразователя

НПСИ-2	200-FPX-0C-24-XX	24 B.
НПСИ-2	200-ГР1-0С-220-XX~220 В	3, 50 Гц.
3.3.2	Допустимый диапазон напряжения питания преобразователя	
	200-ГРХ-0С-24-XX 18 д 200-ГР1-0С-220-XX от 150 да	
3.3.3	Тип входного сигнала ток (4	.20) мА.
3.3.4	Тип выходного сигналаток (4	.20) мА.
3.3.5 преобраз	Минимальное входное напряжение, необходимое для зователя $U_{\scriptscriptstyle \it MuH}$	работы 3,5 В.
3.3.6	Максимально допустимый входной ток	. 22 мА.
Пре	евышение максимально допустимого входного тока может прив нию преобразователя.	ести к
3.3.7	Максимальный выходной ток	. 22 мА.
3.3.8 датчика	Характеристики встроенного в преобразователь источника г	титания
	ение источника питания датчикаот 22 диальный выходной ток	

	ь пульсаций напр ои токе нагрузки 2				
	Номинальное				
выхода				(10	00 ±10) Ом.
	Допустимый диа				
выхода				0 тоот	до 500 Ом.
	Гальваническая				
Электрі	ическая прочност	ь изоляции м	иежду входными	и выходными	
цепями				~15	00 В, 50 Гц.
Электри	ическая прочност	ь изоляции м	иежду входными	цепями и	
цепями	питания			~15	00 В, 50 Гц.
Электрі	ическая прочност	ь изоляции м	иежду выходным	и цепями и	
цепями	питания			~15	00 В, 50 Гц.
_	ическая прочност				
(НПСЙ-				~15	00 В, 50 Гц.
3.3.12	Характеристики	по ЭМС			
Характе	ристики помехоз	ащищенност	и приведены в та	аблице 1.	

Таблица 1 – Характеристика помехозащищенности

Устойчивость к воздействию электростатического разряда	
по ГОСТ 30804.4.2	Степень
Устойчивость к воздействию наносекундных импульсных помех по ГОСТ 30804.4.4	жесткости испытаний 3
Устойчивость к воздействию микросекундных импульсных помех по ГОСТ Р 51317.4.5	Критерий А

3.3.13 Параметры по электробезопасности

Преобразователи соответствуют требованиям электробезопасности и относятся к классу:

II по ГОСТ 12.2.007.0. – для модификаций НПСИ-200-ГР1-X-220-МХ; III по ГОСТ 12.2.007.0. – для модификаций НПСИ-200-ГРХ-X-24-МХ.

3.3.14 Установление режимов

Время установления рабочего режима (предварительный прогрев),
не более5 мин.
Время изменения выходного сигнала при ступенчатом изменении входного с
10 до 90 %, не более
Время непрерывной работы круглосуточно.

3.3.15 Условия эксплуатации

Группа по ГОСТ Р 52931	
Температура Влажность (без конденсации влаги)	
3.3.16 Массогабаритные характеристики	
Масса преобразователя НПСИ-200-ГР1, не более Масса преобразователей НПСИ-200-ГР2, не более Габаритные размеры НПСИ-200-ГР1, НПСИ-200-ГР	200 г.
не более	(115 \times 110 \times 22,5) мм.
3.3.17 Параметры надежности	
Средняя наработка на отказ, не менее Средний срок службы, не менее	

4 Комплектность

В комплект поставки входят:	
Преобразователь измерительный НПСИ-200-ГРх	1 шт
Розетки к клеммному соединителю (для модификаций НПСИ-200-ГР1/	
НПСИ-200-ГР2)	. 3/4 шт.
Паспорт	1 шт.
Потребительская тара	1 шт.

5 Размещение и подключение преобразователя

5.1 Размещение преобразователя

Преобразователи рассчитаны для монтажа на шину (DIN-рельс) типа NS 35/7,5/15. Допускается плотный монтаж преобразователей без зазоров между корпусами. Климатическое исполнение преобразователя допускает его использование в закрытых неотапливаемых помещениях, без каких-либо дополнительных средств обогрева и/или кондиционирования. Тем не менее, не рекомендуется устанавливать преобразователи рядом с мощными источниками тепла, такими, как радиаторы коммутационных устройств, приводов и т.п.

Преобразователи не рассчитаны на работу в местах с высоким содержанием в воздухе агрессивных паров и газов, веществ, вызывающих коррозию.

На рисунке 5.1 приведены габаритные размеры преобразователей.

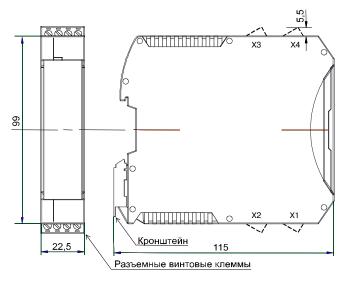


Рисунок 5.1 – Габаритные размеры НПСИ-200-ГР1, НПСИ-200-ГР2

5.2 Подключение преобразователей

Подключение преобразователей должно осуществляться при отключенном питании всей схемы. Электрические соединения осуществляются с помощью клеммных соединителей X1, X2, X3 и X4. Клеммы рассчитаны на подключение проводников с сечением не более 2,5 мм².

Типовые схемы подключения преобразователей приведены на рисунках 5.2 - 5.10.

На схемах подключения использованы следующие обозначения:

ИД – измерительный датчик;

УУ – управляющее устройство (регулятор, контроллер и т.п.);

ИП – измерительный прибор (контроллер, регистратор и т.п.);

ИУ – исполнительное устройство (частотный привод, клапан с МИМ и т.п.).

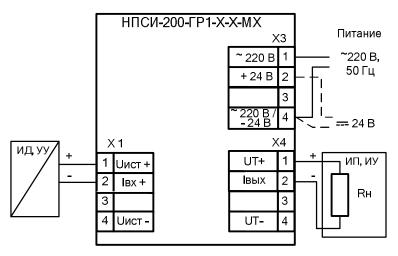


Рисунок 5.2 – Типовое подключение НПСИ-200-ГР1 с пассивным входным датчиком (питание от преобразователя по токовой петле) и активным выходом токовой петли

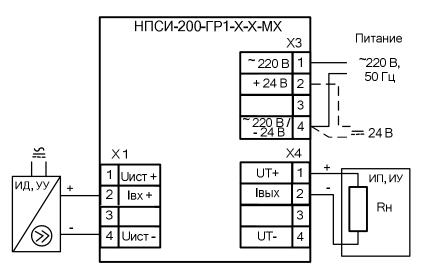


Рисунок 5.3 – Типовое подключение НПСИ-200-ГР1 с активным входным датчиком и активным выходом токовой петли

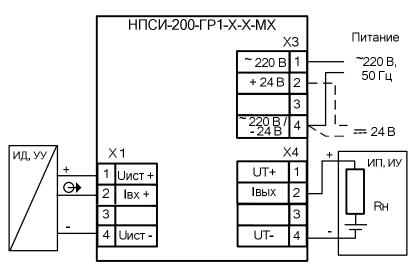


Рисунок 5.4 – Типовое подключение НПСИ-200-ГР1-X-X-MX с пассивным входным датчиком (питается от преобразователя) и пассивным выходом токовой петли

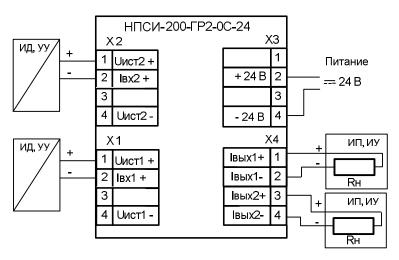


Рисунок 5.5 – Типовое подключение НПСИ-200-ГР2-0С-24 с пассивным входным датчиком (питание от преобразователя по токовой петле) и активным выходом токовой петли

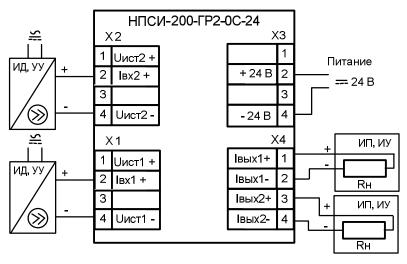


Рисунок 5.6 – Типовое подключение НПСИ-200-ГР2-0C-24 с активным входным датчиком и активным выходом токовой петли

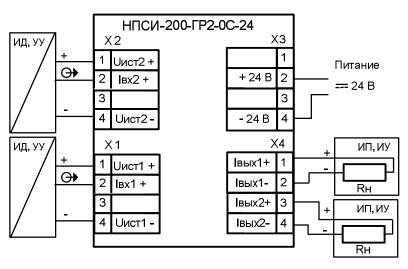


Рисунок 5.7 – Типовое подключение НПСИ-200-ГР2-0C-24 с пассивным входным датчиком (питание от преобразователя) и активным выходом токовой петли

Каналы преобразователей НПСИ-200-ГР2 полностью независимы, взаимное влияние на работоспособность друг друга отсутствует.

Одно из возможных применений НПСИ-200-ГРх – это размножение сигнала от одного источника на несколько гальванически изолированных сигналов для нескольких приемников. Примеры подключения преобразователей НПСИ-200-ГР2 для такого применения приведены на рисунках 5.8-5.9. Преобразователи НПСИ-200-ГР1 подключаются аналогично НПСИ-200-ГР2, только вместо двух каналов НПСИ-200-ГР2 используются два одноканальных преобразователя НПСИ-200-ГР1. При размножении сигналов от одного источника 1 в N, необходимо помнить о том, что источник должен иметь возможность обеспечивать на своем выходе напряжение не менее $U=N\times3,5\,\mathrm{B}$.

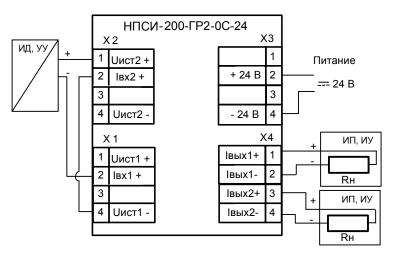


Рисунок 5.8 – Разделение сигнала от одного источника с пассивным выходом на два гальванически изолированных приемника при помощи НПСИ-200-ГР2-0C-24

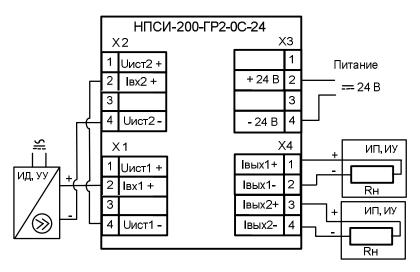


Рисунок 5.9 – Разделение сигнала от одного источника с активным выходом на два гальванически изолированных приемника при помощи НПСИ-200-ГР2-0C-24

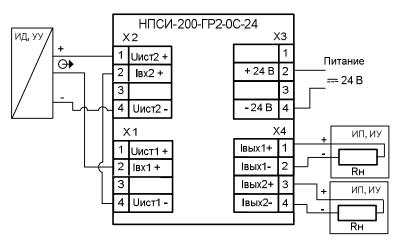


Рисунок 5.10 – Разделение сигнала от одного источника с трехпроводной схемой подключения на два гальванически изолированных приемника при помощи НПСИ-200-ГР2-0С-24

6 Указание мер безопасности

По способу защиты человека от поражения электрическим током преобразователь соответствует классу:

II по ГОСТ 12.2.007.0. – для модификаций НПСИ-200-ГР1-0С-220-МХ;

III по ГОСТ 12.2.007.0. – для модификаций НПСИ-200-ГРХ-0С-24-МХ.

При эксплуатации, техническом обслуживании и поверке преобразователя необходимо соблюдать требования указанного ГОСТа.

Эксплуатация и обслуживание преобразователя должны производиться квалифицированным персоналом, прошедщим обучение правилам электробезопасности.

Подключение преобразователя к электрической схеме, его отключение, а также техническое обслуживание должно происходить при выключенном питании всей схемы.

При эксплуатации преобразователя необходимо выполнять требования техники безопасности, изложенные в документации на средства измерения и оборудование, в комплекте с которыми он работает.

7 Правила транспортирования и хранения

Преобразователь должен транспортироваться в закрытых транспортных средствах любого вида в транспортной таре при условии защиты от прямого воздействия атмосферных осадков.

Условия хранения:

- температура окружающего воздуха от минус 55 до плюс 70 °C;
- относительная влажность воздуха до 95 % при температуре 35 °C;
- воздух в месте хранения не должен содержать пыли, паров кислот и щелочей, а также газов, вызывающих коррозию.

8 Гарантийные обязательства

Предприятие-изготовитель гарантирует соответствие выпускаемых преобразователей заявленным техническим характеристикам, приведенным в паспорте, при соблюдении потребителем всех допустимых условий и режимов эксплуатации, транспортирования и хранения.

Предприятие-изготовитель оставляет за собой право внесения изменений в конструкцию и эксплуатационную документацию приборов без предварительного уведомления потребителей.

Длительность гарантийного срока – 36 месяцев. Гарантийный срок исчисляется от даты отгрузки (продажи) прибора. Документом, подтверждающим гарантию, является паспорт (или формуляр) с отметкой предприятия-изготовителя.

Гарантийный срок продлевается на время подачи и рассмотрения рекламации, а также на время проведения гарантийного ремонта силами изготовителя в период гарантийного срока.

Предприятие-изготовитель не берет на себя ответственность за прямые или косвенные убытки, которые может понести потребитель вследствие неработоспособности прибора. Требуемые параметры надежности и ремонтопригодности

систем должны обеспечиваться потребителем за счет применения соответствующих системотехнических решений и поддержания запасов ЗИП.

Гарантийные обязательства выполняются предприятием-изготовителем на своей территории. Доставка преобразователя на территорию предприятия-изготовителя для гарантийного ремонта осуществляется потребителем своими силами и свой счет.

9 Адрес предприятия-изготовителя

Россия, 603107, Нижний Новгород, а/я 21

тел./факс: (831) 260-13-08

www.contravt.ru sales@contravt.ru

10 Свидетельство о приёмке

Тип преобразователя НПСИ-20)0-ΓP				
Заводской номер №					
Дата выпуска	«	»		_20	_ r
Представитель ОТК	должност	'h	подпись		ФИО
Первичная поверка проведена				20	_ 「
Поверитель	должності	.	подпись		ФИО
	должност	ь	подпиов		4710

Приложение А

ПИМФ.422189.001 МП «Преобразователи сигналов измерительные нормирующие НПСИ серии NNN» Методика поверки

А.1 Общие положения и область распространения

- **А.1.1** Настоящая методика распространяется на «Преобразователи сигналов измерительные нормирующие НПСИ» НПСИ-200-ГР1, НПСИ-200-ГР2 выпускаемые по техническим условиям ПИМФ.422189.001 ТУ (в дальнейшем преобразователи), и устанавливает порядок первичной и периодических поверок.
- **А.1.2** В настоящей методике использованы ссылки на следующие нормативные документы: «Преобразователи сигналов измерительные нормирующие НПСИ. НПСИ-200-ГРх. Паспорт ПИМФ.422189.010 ПС».
- **А.1.3** Проверка преобразователей проводится для определения метрологических характеристик и установление их пригодности к применению.
- **А.1.4** Первичная поверка преобразователей проводится на предприятииизготовителе при выпуске.
- **А.1.5** Интервал между поверками **5 лет**.

А.2 Операции поверки

- **А.2.1** При проведении поверки преобразователей выполняют операции, перечисленные в таблице А.2.1 (знак «+» означает необходимость проведения операции).
- **А.2.2** При получении отрицательных результатов поверки преобразователь бракуется.

Таблица А.2.1 – Перечень операций поверки

Наименование	Номер п.п.	Операции поверки		
операции	Методики	Первичная	Периодическая	
операции	поверки	поверка	Поверка	
1 Внешний осмотр	A.6.1	+	+	
2 Опробование	A.6.2	+	+	
3 Определение метрологических	A.6.3	_	_	
характеристик	A.0.3	T	T	

А.3 Средства поверки

Перечень средств измерений, используемых при поверке, приведён в таблице А.З.1. Таблица А.З.1 – Перечень средств измерений и вспомогательного оборудования, используемых при поверке

Номер пункта	Наименование и тип основного средств измерений, используемых при поверке.
методики поверки	Основные технические характеристики средства поверки
	Калибратор электрических сигналов СА51 (СА71).
	Основная погрешность ±0,02 %
A.6.3.1	Наименование и тип вспомогательного оборудования ис-
	пользуемого при поверке
	Резистор С2-33Н-0,125-100 Ом-5 %

<u>Примечание:</u> Вместо указанных в таблице А.З.1 средств измерений разрешается применять другие аналогичные измерительные приборы, обеспечивающие измерения соответствующих параметров с требуемой погрешностью.

Все средства измерений, используемые при поверке, должны быть поверены в соответствии с требованиями ПР 50.2.006.

А.4 Требования по безопасности

При проведении поверки необходимо соблюдать требования безопасности, предусмотренные ГОСТ 12.2.007.0, указания по безопасности, изложенные в паспортах на преобразователи, применяемые средства измерений и вспомогательное оборудование.

А.5 Условия поверки и подготовка к ней

- **А.5.1** Поверка преобразователей должна проводиться при нормальных условиях:
 - температура окружающего воздуха (23 ±5) °C;
 - относительная влажность от 30 до 80 %;
 - атмосферное давление от 86 до 106 кПа;
 - номинальное напряжение питания СИ, указанное в документации на них;
 - отсутствие внешних электрических и магнитных полей, влияющих на работу преобразователей.
- **А.5.2** Перед началом поверки поверитель должен изучить следующие документы:
 - «Преобразователи сигналов измерительные нормирующие НПСИ. НПСИ-200-ГРх. Паспорт ПИМФ.422189.010 ПС».
 - Инструкции по эксплуатации на СИ и оборудование, используемые при поверке;
 - Инструкции по охране труда и правила техники безопасности.
 - **А.5.3** До начала поверки СИ и оборудование, используемые при поверке, должны быть в работе в течение времени самопрогрева, указанного в документации на них.

А.6 Проведение поверки

А.6.1 Внешний осмотр

При внешнем осмотре проверяется:

- соответствие комплектности преобразователя паспорту;
- состояние корпуса преобразователя;
- состояние соединителей.

А.6.2 Опробование

Опробование предусматривает включение преобразователя и его проверку по п. А.6.3.1 в любой точке.

А.6.3 Определение метрологических характеристик

Определение метрологических характеристик проводится путем подачи входных и измерения выходных унифицированных сигналов постоянного тока при помощи калибратора электрических сигналов.

А.6.3.1 Определение основной погрешности преобразования входных унифицированных сигналов постоянного тока в унифицированные сигналы постоянного тока в диапазоне от 4 до 20 мА

Пределы основной допускаемой приведённой погрешности преобразования унифицированных сигналов постоянного тока от 4 до 20 мА в выходные сигналы от 4 до 20 мА должны быть не более $\pm 0,1$ % от диапазона измерения при сопротивлении нагрузки 100 Ом.

Порядок проведения поверки:

- в зависимости от модификации подключить преобразователь по схеме, приведенной на рисунке А.6.1 или А.6.2;
 - подать питание на преобразователь;
 - канал «source» калибратора установить в режим «20 mA SINK»;
- подавая на вход преобразователя сигналы постоянного тока, значения которых соответствуют значениям контрольных точек, приведённым в таблице А.6.1, фиксировать значения выходного тока преобразователя I_{вых} по показаниям калибратора;
 - рассчитать погрешность по приведённой в таблице А.6.1 формуле;
 - повторить перечисленные выше операции проверки для всех контрольных точек;
 - повторить для всех каналов преобразователя.

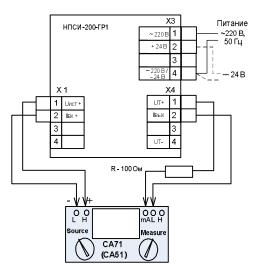


Рисунок А.6.1 – Схема для определения пределов основной приведённой погрешности преобразователей НПСИ-200-ГР1

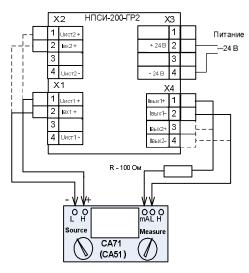


Рисунок А.6.2 – Схема для определения пределов основной приведённой погрешности преобразователей НПСИ-200-ГР2

Таблица А.6.1

НПСИ-200-ГР1								
№ контрольной точки	№ контрольной точки 1 2 3 4 5 6							
Івх, мА	4,0	7,2	10,4	13,6	16,8	20,0		
Івых, мА								
$\delta(\%) = 100 \text{IBX - IBыX} / 16$								
	НΠ	СИ-200-	ГР2			•		
№ контрольной точки	1	2	3	4	5	6		
Івх1, мА	4,0	7,2	10,4	13,6	16,8	20,0		
Івых1, мА								
$\delta(\%) = 100 \text{IBX} - \text{IBЫX} /16$								
Івх2, мА	4,0	7,2	10,4	13,6	16,8	20,0		
Івых2, мА								
$\delta(\%) = 100 \text{IBX} - \text{IBЫX} /16$								

Результаты испытаний считаются положительными, если пределы основной допускаемой погрешности преобразования тока не превышают $\pm 0,1$ % во всех точках проверки.

- Повторить для всех каналов преобразователя.

А.7 Оформление результатов поверки

- **А7.1** Результаты поверки оформляются в порядке, установленным метрологической службой, которая осуществляет поверку, в соответствии с Приказом Минпромторга России от 02.07.2015 г. № 1815.
- **A7.2** Если преобразователь по результатам поверки признан пригодным к применению, то на него выдается свидетельство о поверке или делается запись в паспорте, заверяемая подписью поверителя и знаком поверки.
- **А7.3** В случае отрицательных результатов поверки преобразователь признают непригодным к применению и направляют в ремонт. Свидетельство о поверке аннулируется, выписывается извещение о непригодности к применению и вносится запись о непригодности в паспорт.
- **А7.4** Критерием предельного состояния преобразователя является невозможность или нецелесообразность его ремонта.

Преобразователь, не подлежащий ремонту, изымают из обращения и эксплуатации.

31.10.2018 42

Дата отгрузки		«	<u> </u>	20 r	
	должность	подпись	ФИО		
	11	Отмет	ки в эксплу	атации	
Дата ввода в эксплуатацию «»20 г					
Ответственный _	до	лжность	подпись	ФИО	
		МΠ			