

СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЁСКИМИ ПРОЦЕССАМИ

ПРЕОБРАЗОВАТЕЛИ СИГНАЛОВ серии НПСИ

НПСИ-ЧВ/ЧС

Паспорт

ПИМФ.411621.001 ПС Версия 5.0

Преобразователи зарегистрированы в Госреестре средств измерений под № 43742-15

Сертификат RU.C.32.011.A № 58903 от 05.06.2015

НПФ КонтрАвт

Россия, 603107, Нижний Новгород, а/я 21

тел./факс: (831) 260-03-08 – многоканальный, 466-16-04, 466-16-94

e-mail: sales@contravt.nnov.ru

Содержание

1 Обозначение при заказе	2
2 Назначение	3
З Технические характеристики	7
4 Комплектность	17
5 Устройство и работа преобразователя	18
6 Размещение и подключение преобразователя	35
7 Указание мер безопасности	41
8 Правила транспортирования и хранения	42
9 Гарантийные обязательства	43
10 Адрес предприятия-изготовителя:	43
11 Свидетельство о приёмке	44
12 Отметки в эксплуатации	58
Приложение А Методика поверки преобразователей серии НПСИ	45

Настоящий паспорт предназначен для ознакомления с устройством, принципом действия, конструкцией, эксплуатацией, техническим обслуживанием и поверкой «Преобразователей сигналов серии НПСИ» НПСИ-ЧВ и НПСИ-ЧС (в дальнейшем – преобразователи). Преобразователи выпускаются по техническим условиям ПИМФ.411622.003 ТУ.

1 Обозначение при заказе

Нормирующий преобразователь **НПСИ-X1-X2-X3-X4** Модификация: МО – Базовая модификация Мх – Модификации по заказу потребителя Напряжение питания: 220 - Номинальное значение - 220 В, рабочий диапазон от 85 до 265 В, 50 Гц (постоянное от 110 до 370 В) 24 - Номинальное значение - постоянное напряжение 24 В, рабочий диапазон напряжения питания постоянного тока от 12 до 36 В Наличие сигнализации: С – Сигнализация есть 0 - Сигнализации нет Измеряемые параметры: **ЧВ** – Частотно-временные параметры цифровых и аналоговых сигналов **ЧС** – Частота сети переменного тока

Пример записи: «Преобразователи сигналов серии НПСИ» НПСИ-ЧВ-С-220-МО – нормирующий преобразователь сигналов измерительный, измеряемые параметры – частотно-временные параметры цифровых и аналоговых сигналов, с функцией сигнализации, номинальное значение напряжения питания ~ 220 В, 50 Гц, базовая модификация.

2 Назначение

Преобразователи НПСИ-ЧВ предназначены для измерения частоты, периода, длительности импульсов цифровых и аналоговых сигналов, их преобразования в унифицированные сигналы тока и напряжения, а также для сигнализации при достижении значениями измеряемых параметров заданных уровней.

Преобразователи НПСИ-ЧС являются упрощённой версией НПСИ-ЧВ и предназначены для измерения только одного параметра – частоты сетевого напряжения.

Выполняемые функции:

- измерение частотно-временных параметров сигналов согласно таблице 1 и их преобразование в унифицированные выходные сигналы;
 - программный выбор измеряемого параметра;

- программный выбор диапазона преобразования (пользователь с помощью параметров НИЖН.ГР. и BEPX.ГР. задаёт диапазон преобразования измеряемого параметра, см. таблицу 9);
- контроль и сигнализация аварийных ситуаций: выхода значения измеряемого параметра за допустимый диапазон, обрыва цепи выходного тока (для выхода от 4 до 20 мА);
- индикация уровня выходного сигнала в процентах на цифровом 2-х разрядном дисплее, а также на линейной шкале (бар-графе);
- индикация на цифровом 2-х разрядном дисплее, значений параметров и результатов самодиагностики;
- конфигурирование параметров преобразователя с помощью 2 кнопок на передней панели;
 - сохранение параметров в энергонезависимой памяти;
- гальваническая изоляция всех функциональных блоков между собой. Напряжение изоляции 1500 В между цепями: входы, выходы, сигнализация, питание;
- сигнализация по уровню измеряемого параметра со светодиодной индикацией и с формированием выходного дискретного сигнала на реле: две функции сигнализации (прямая и обратная), каждая из них может быть с функцией защёлки.

Пользователь может задать (сконфигурировать) с помощью кнопок и светодиодного дисплея на передней панели следующие параметры преобразователя:

- тип и диапазон измерения параметра (в соответствии с таблицей 1);
- верхнюю и нижнюю границу диапазона преобразования измеряемого параметра (в соответствии с таблицей 9);
 - тип и диапазон выходного сигнала (в соответствии с таблицей 2);
- уровень выходного сигнала при возникновении аварийной ситуации (высокий/низкий);
- тип функции сигнализации (прямую/обратную/прямую с защёлкой/обратную с защёлкой);
- уровень срабатывания сигнализации (в процентах от диапазона преобразования).

Преобразователь рассчитан для монтажа на DIN-рейку по EN 50022 внутри шкафов автоматики и в шкафах низковольтных комплектных устройств.

Преобразователь обеспечивает:

- гальваническую изоляцию между собой входа, выхода сигнализации, питания;
 - высокую точность преобразования 0,1 %;
 - высокую температурную стабильность преобразования 0,025 % / градус;

- расширенный диапазон рабочих температур от минус 40 до плюс 70 °C;
- защиту от электромагнитных помех при передаче сигналов на большие расстояния;
- передачу значения измеряемого параметра на удаленные вторичные приборы по стандартным электротехническим проводам;
- визуальный контроль уровня выходного сигнала по цифровому дисплею и по бар-графу;
- сигнализацию при выходе измеряемого параметра за допустимые пределы (модификации с сигнализацией);
- экономию места в монтажном шкафу компактный корпус, ширина 22,5 мм;
- простой монтаж/демонтаж, обеспечиваемый разъёмными винтовыми клеммами.

Область применения: системы измерения, сбора данных, контроля и регулирования электрических параметров электросети в технологических процессах в энергетике, металлургии, химической, нефтяной, газовой, машиностроительной, пищевой, перерабатывающей и других отраслях промышленности, а также научных исследованиях.

Примечание: По специальному заказу выпускаются преобразователи с индивидуальными (нестандартными) характеристиками и функциями.

3 Технические характеристики

3.1 Метрологические характеристики

3.1.1 Основная погрешность

Пределы основной допускаемой приведенной погрешности преобразования частотно-временных сигналов в выходные унифицированные сигналы тока от 0 до 20 мA, от 4 до 20 мA и унифицированные сигналы напряжения от 0 до 5 B, от 0 до 10 B, не более \pm 0,1 % от диапазона измерения.

Пределы основной допускаемой приведенной погрешности преобразования частотно-временных сигналов в выходные унифицированные сигналы тока от 0 до 5 мА и унифицированные сигналы напряжения от 0 до 1 В, от 0 до 2,5 В, не более \pm 0,25 % от диапазона измерения.

Модификации преобразователей, тип входных сигналов, тип измеряемого параметра, диапазоны измерения приведены в таблице 1.

Таблица 1 – Измеряемые частотно-временные параметры сигналов

Модификация	Тип входного сигнала	Тип измеряемого параметра		Диапазоны измерения	
		Частота		(0,0210000) Гц	
		Длитель-	малая*	(0,000110) c	
	Цифровой	ность им- пульсов	большая	(199) c	
LIEGIALIB	Перио	-ЧВ Период <u>малый</u> большой	Пориол	малый	(0,00011) c
НПСИ-ЧВ			большой	(199) c	
	Аналоговый	Частота		(0,0210000) Гц	
		Период	малый	(0,00011) c	
			большой	(199) c	
нпси-чс	Аналоговый	Частота		(0,02100) Гц	

^{* -} для периодических сигналов с ШИМ

Типы и диапазоны выходных сигналов, пределы основной погрешности преобразователя приведены в таблице 2. Приведённые погрешности нормированы к диапазону измерения.

Таблица 2 – Выходные унифицированные сигналы

Тип выходного	Диапазон выходного сигнала	Пределы основной
сигнала		погрешности (%)
	(05) мА	± 0,25 %
Ток	(020) мА	± 0,1 %
	(420) мА	± 0,1 70
	(01) B	± 0,25 %
Напряжение	(02,5) B	± 0,25 %
Папряжение	(05) B	± 0,1 %
	(010) B	± 0, 1 70

3.1.2 Дополнительная погрешность

Пределы дополнительной погрешности преобразователей, вызванные изменением температуры окружающего воздуха от нормальной (23 ± 5) °C до любой температуры в пределах рабочего диапазона, не превышают 0,5 значения предела основной погрешности на каждые 10 °C изменения температуры.

Пределы дополнительной погрешности преобразователей, вызванные изменением сопротивления нагрузки токового выхода от его номинального значения до любого в пределах допустимого диапазона сопротивлений нагрузки (при номинальном напряжении питания), не превышают 0,5 значения предела основной погрешности.

Пределы дополнительной погрешности преобразователей, вызванные воздействием повышенной влажности 95 % при температуре плюс 35 °C без конденсации влаги, не превышают 0.5 значения предела основной погрешности.

3.1.3 Интервал между поверками составляет **3 года.**

3.2 Характеристика преобразования

Преобразователь имеет линейно возрастающую характеристику выходного сигнала при измерении частотно-временных параметров сигналов.

Зависимость между выходным током и измеренной величиной (значением измеряемого параметра) определяется формулой (1):

$$I_{\text{вых}} = I_{\text{мин}} + (I_{\text{макс}} - I_{\text{мин}}) \times (X - X_{\text{мин}}) / (X_{\text{макс}} - X_{\text{мин}}),$$
 (1) где: X — значение измеренной величины;

Хмин – нижняя граница диапазона преобразования (НИЖН.ГР.);

 $X_{\text{макс}}$ – верхняя граница диапазона преобразования (ВЕРХ.ГР.);

 $I_{\text{вых}}$ – значение выходного тока, мА;

 $I_{\text{мин}}$, $I_{\text{макс}}$ – нижняя и верхняя границы диапазона выходного тока, мА.

Зависимость между выходным напряжением и измеренной величиной (значением измеряемого параметра) определяется формулой (2):

$$U_{\text{вых}} = U_{\text{мин}} + (U_{\text{макс}} - U_{\text{мин}}) \times (X - X_{\text{мин}}) / (X_{\text{макс}} - X_{\text{мин}}), \tag{2}$$

где: **X** – значение измеренной величины;

 $X_{\text{мин}}$ – нижняя граница диапазона преобразования (НИЖН.ГР.);

 $X_{\text{макс}}$ – верхняя граница диапазона преобразования (ВЕРХ.ГР.);

*U*_{вых} -значение выходного напряжения, В;

 $\emph{\textbf{U}}_{\text{\tiny MИН}}$, $\emph{\textbf{U}}_{\text{\tiny MAKC}}$ – нижняя и верхняя границы диапазона выходного напряжения, В.

3.2.1 Границы диапазонов выходных сигналов преобразователей приведены в таблицах 3, 4.

Таблица 3 – Границы диапазонов выходных токовых сигналов

Диапазоны выходного токового сигнала	Диапазоны линей- ного изменения выходного сигнала	Низкий уровень аварийного сигнала	Высокий уровень аварийного сигнала
(05) мА	(05,1) мА	0 мА	5,5 мА
(020) мА	(020,5) мА	0 мА	21,5 мА
(420) мА	(3,820,5) мА	3,6 мА	21,5 мА

Таблица 4 – Границы диапазонов выходных сигналов напряжения

Диапазон	Диапазон линей-	Низкий уровень	Высокий уровень
выходного	ного изменения	аварийного	аварийного
сигнала напряжения	выходного сигнала	сигнала	сигнала
(01) B	(01,1) B	0	1,2 B
(02,5) B	(02,6) B	0	2,7 B
(05) B	(05,1) B	0	5,5 B
(010) B	(011,0) B	0	12 B

3.2.2 Время изменения выходного сигнала при ступенчатом изменении входного, не более 1 с.

3.3 Эксплуатационные характеристики

3.3.1 Гальваническая изоляция

Гальваническая изоляция входных, выходных цепей		
и цепей питания15	500 B,	50 Гц.

3.3.2 Питание преобразователей

Номинальное значение напряжения питания:

НПСИ-X-X-24-X	== 24 В, постоянного тока.
НПСИ-X-X-220-X	~220 В, 50 Гц.

ания: от 12 до 36 В. от ~ 85 от 265 В, 50 Гц. ощность, не более5 В.А.	НПСИ-Х-Х-220-Х
нализации	3.3.3 Нагрузочные параметр
250 B2 A	Коммутируемый ток
сигналов	3.3.4 Параметры аналоговых
напряжение, двухполярный. ± 600 В. ± 10 В. 600 кОм.	Максимальное пиковое значе Зона нечувствительности
сигналов	3.3.5 Параметры дискретных
ткрытый коллектор», «логический». контакта»100 Ом.	,

Уровень логической единицы
3.3.6 Сопротивление нагрузки
Номинальное значение сопротивления нагрузки токового выхода
Допустимый диапазон сопротивлений нагрузки токового выходаот 0 до 500 Ом.
Минимальное допустимое значение сопротивления нагрузки выхода напряжения (900 \pm 45) Ом.
3.3.7 Пульсации выходного сигнала
Пульсации (от пика до пика) выходных сигналов постоянного тока или напряжения в полосе от 0 до 20 Гц от верхнего предела изменения выходных сигналов, не помехозащищенности более
3.3.8 Характеристики по ЭМС
Характеристики помехозащищенности приведены в таблице 5.

Таблица 5 – Характеристика помехозащищенности

Устойчивость к воздействию электростатического разряда по		
ГОСТ 30804.4.2		
Устойчивость к воздействию наносекундных импульсных		
помех по ГОСТ 30804.4.4		
Устойчивость к воздействию микросекундных импульсных по-		

Степень жесткости испытаний 3 Критерий А

Устойчивость к динамическому изменению параметров питания по ГОСТ 30804.4.11

3.3.9 Параметры по электробезопасности

Преобразователи соответствуют требованиям электробезопасности по ГОСТ 12.2.007.0 и относится к классу **II.**

3.3.10 Установление режимов

мех по ГОСТ Р 51317.4.5

Время установления рабочего режима (предварительный прогрев),
не более 5 мин.
Время установления выходного сигнала после скачкообразного изменения
входного, не более 1 с.
Время непрерывной работыкруглосуточно.

3.3.11 Условия эксплуатации

Группа по ГОСТ Р 52931 от Температура от	
Влажность (без конденсации влаги)	95 % при 35 °C.
3.3.12 Массогабаритные характеристики	
Масса преобразователя, не более Габаритные размеры, не более Внешний вид преобразователей приведен на рису	\dots (115 × 105 × 22,5) мм.
3.3.13 Параметры надежности	
Средняя наработка на отказ, не менее Средний срок службы, не менее	

4 Комплектность

3 комплект поставки входят:	
Преобразователь измерительный НПСИ	1 шт
Розетки к клеммному соединителю	4 шт
Паспорт	1 шт
Потребительская тара	1 шт

5 Устройство и работа преобразователя

5.1 Органы индикации и управления

Передняя панель преобразователей НПСИ-ЧВ и НПСИ-ЧС представлена на рисунках 1 и 2. Назначение органов индикации и управления модификаций НПСИ-ЧВ-X-X-X приведено в таблице 6.

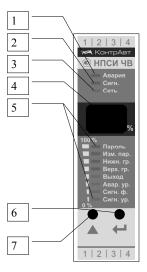


Рисунок 1 – Внешний вид преобразователя НПСИ-ЧВ

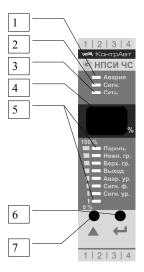


Рисунок 2 – Внешний вид преобразователя НПСИ-ЧС

Таблица 6 – Органы индикации и управления

	onique o optimis inglikación i ynpasientin						
Nº	Наименование органа управ- ления или ин- дикации	Режим РАБОТА	Режим КОНФИГУРИРОВАНИЕ	Режим АВАРИЯ			
1	Индикатор «Авария»	Не горит	Мигает при обнаружении преобразователем аварийной ситуации	Мигает при обнаружении преобразователем аварийной ситуации			
2	Индикатор «Сигн.»	Индицирует сраба- тывание реле сиг- нализации	Индицирует срабатывание реле сигнализации	Индицирует сра- батывание реле сигнализации			
3	Индикатор «Сеть»	Индицирует включенное состояние преобразователя	Горит непрерывно, если разрешен только просмотр параметров, мигает – если измене- ние	Индицирует включенное со- стояние преобра- зователя			
4	Светодиодный дисплей	Отображает уровень выходного сигнала (в процентах)	Отображает значение выбранного параметра	Мигает код ава- рийной ситуации			

Nº	Наименование органа управ- ления или ин- дикации	Режим РАБОТА	Режим КОНФИГУРИРОВАНИЕ	Режим АВАРИЯ
5	Группа из вось-	Отображает уро-	Указывает параметр,	Отображает уро-
	ми индикаторов	вень выходного	значение которого ото-	вень аварийного
	меню/ бар-	сигнала, выполня-	бражается на светоди-	сигнала: высокий
	граф	ет функцию свето-	одном дисплее	– мигает вся шка-
		диодной шкалы		ла, низкий – шка-
		(бар-графа)		ла не светится
6	٨	Не функционирует	Установка значения	Не функциониру-
	Кнопка « Δ »		параметров	ет
7	Кнопка « ← »	Переход в режим	Выбор параметра, под-	Переход в режим
		КОНФИГУРИРО-	лежащего просмотру	КОНФИГУРИРО-
		ВАНИЕ	или изменению	ВАНИЕ

Примечание: назначение органов индикации и управления модификаций НПСИ-ЧС аналогично НПСИ-ЧВ.

5.2 Режимы работы преобразователя

Преобразователь может функционировать в одном из 3-х режимов:

- режим РАБОТА;
- режим **АВАРИЯ**;
- режим КОНФИГУРИРОВАНИЕ.

5.2.1 Режим РАБОТА

Режим **РАБОТА** – это основной режим работы преобразователя. Режим **РАБОТА** устанавливается сразу после включения питания (при отсутствии аварийных ситуаций).

В этом режиме на светодиодном дисплее и бар-графе отображается значение выходного сигнала в процентах в соответствии с таблицей 7.

Кнопкой « \checkmark » осуществляется переход в режим **КОНФИГУРИРОВАНИЕ**. Кнопка « Δ » в режиме **РАБОТА** не функционирует.

Для сброса функции защёлки сигнализации (параметр СИГН. Ф. = F.3 и F.4) следует нажать и удерживать более 3 с одновременно кнопки « \blacktriangleleft » и « Δ ».

Таблица 7 – Значения светодиодного дисплея в режиме РАБОТА

Значения	
светодиодного дисплея	Описание значений
nn	Выход за верхнюю границу диапазона выходного сигнала
0099,	Уровень выходного сигнала в процентах от диапазона. Символ отображает 100 %
υυ	Выход за нижнюю границу диапазона выходного сигнала

5.2.2 Режим **АВАРИЯ**

При возникновении аварийных ситуаций (см. таблицу 8) преобразователь переходит в режим **АВАРИЯ**.

В режиме АВАРИЯ:

- начинает мигать индикатор **АВАРИЯ**;
- на светодиодном дисплее отображается код аварийной ситуации;
- токовый выходной сигнал и выходной сигнал напряжения принимает аварийное значение;
 - бар-граф отображает уровень аварийного выходного сигнала.

Таблица 8 – Аварийные ситуации и их коды

Код аварийной ситуации	Описание аварийной ситуации					
In	Выход значения измеряемого параметра за диапазон измерения					
Ou	Обрыв выходной цепи или превышение максимально- допустимого сопротивления нагрузки (только для выходного токо- вого сигнала (420) мА)					
Er	Внутренняя неисправность преобразователя					

Уровень выходного сигнала в аварийной ситуации (высокий или низкий) устанавливается параметром «АВАР. УР.». Формирование аварийного уровня выходного сигнала позволяет внешним системам по величине сигнала определять наличие аварийных ситуаций, обнаруженных преобразователем.

Выход из режима **АВАРИЯ** в режим **РАБОТА** осуществляется автоматически при исчезновении аварийной ситуации.

Кнопка « Δ » в режиме **АВАРИЯ** не функционирует. Нажатие на кнопку « \blacktriangleleft » переводит в режим **КОНФИГУРИРОВАНИЕ**.

Для сброса функции защёлки сигнализации (параметр СИГН. Ф. = F.3 и F.4) следует нажать и удерживать более 3 с одновременно кнопки « \P » и « Δ ».

Для диапазонов от 0 до 5 мA и от 0 до 20 мA аварийная ситуация «обрыв выходной цепи» – не определяется.

5.2.3 Режим КОНФИГУРИРОВАНИЕ

Режим **КОНФИГУРИРОВАНИЕ** предназначен для настройки функций преобразователя.

Режим **КОНФИГУРИРОВАНИЕ** не влияет на формирование выходного токового сигнала. При возникновении аварийной ситуации в режиме **КОНФИГУРИРО-ВАНИЕ** выходной сигнал переходит в соответствующий аварийный уровень.

Предусмотрено два способа входа в режим КОНФИГУРИРОВАНИЕ:

- вход для просмотра значений параметров;
- вход для просмотра и изменения значений параметров.

Вход в режим **КОНФИГУРИРОВАНИЕ** для просмотра значений параметров осуществляется из режима **РАБОТА** или из режима **АВАРИЯ** кратковременным нажатием на кнопку « \checkmark ». При этом параметр «**ПАРОЛЬ**» пропускается, просматривается сразу параметр «**ВХОД**».

Вход в режим **КОНФИГУРИРОВАНИЕ** для изменения значений параметров осуществляется из режима **РАБОТА** или из режима **АВАРИЯ** следующим образом:

- отпустить кнопку «◄ ». При помощи кнопки «△» выбрать значение пароля 05. Это значение устанавливается предприятием изготовителем для всех преобразователей данного типа и не подлежит изменению.
- нажать на кнопку « ◄ ». В случае правильного ввода пароля на светодиодном дисплее кратковременно высветится сообщение **Ac** и осуществится переход к просмотру и изменению параметра «**BXOД**». При ошибочном значении введенного пароля кратковременно высветится сообщение **Er** и преобразователь перейдет в режим **PAБОТA**.

Кнопка « \blacktriangleleft » осуществляет переход к следующему параметру, кнопка « Δ » меняет значения параметров. При удержании кнопки « Δ » происходит быстрое изменение значения параметра.

Выход из режима **КОНФИГУРИРОВАНИЕ** осуществляется кнопкой « ✓ » после последнего параметра или автоматически по истечении 30 с с момента последнего нажатия на любую кнопку.

Параметры преобразователя, доступные в меню **КОНФИГУРИРОВАНИЕ** для просмотра или для изменения, приведены в таблице 9.

Таблица 9 – Состав меню КОНФИГУРИРОВАНИЕ

таолица о	Coolas Monio Rent III II Con III				
Код параметра на лицевой наклейке	Название параметра	Модифика- ции	Возможные значения параметра	Описание значений параметров	
			0099	При просмотре параметров – значение не отображается. Пароль – 05 . Изменению не подлежит	
		Все модифика-	Ac	Кратковременно возникающее сообщение при	
ПАРОЛЬ	Пароль			нажатии на кнопку « 🛶 в случае выбора правильного значения пароля	
		ции		Кратковременно возникающее сообщение при	
			F.,		
			Er	нажатии на кнопку « 🕶 » в случае выбора не-	
				правильного значения пароля	
ИЗМ. ПАРАМ.	Измеряемый	нпси-чв	d.1	Частота цифрового сигнала. (0,0210000) Гц	
	параметр		d.2	Длительность положительных импульсов циф-	
			u.z	рового сигнала малая (0,00011) с	
			d.3	Длительность положительных импульсов циф-	
			4.0	рового сигнала большая (199) с	
			d.4	Длительность отрицательных импульсов циф-	
			u.4	рового сигнала малая (0,00110) с	
				Длительность отрицательных импульсов циф-	
			d.5	рового сигнала большая (199) с	
			d.6	Период цифрового сигнала малый (0,00011) с	
			d.7	Период цифрового сигнала большой (199) с	
			A.1	Частота аналогового сигнала. (0,0210000) Гц	
				, , , , , , , , , , , , , , , , , , , ,	

			A.2	Пери	од аналогового сигнала малый (0,00011) с		
			A.3	Пері	од аналогового сигнала большой (199) с		
	Нижняя			зада Для ност росе	ля ИЗМ.ПАРАМ – d1, A1 (частота) величина дается в герцах ля ИЗМ.ПАРАМ – d2, d6, A.2 (период, длитель ость малые) величина задается в сотнях ми осекунд		
нижн. гр.	граница диапазона преобра- зования	нпси-чс	о -100 тельность большие) величина задается дах =10000		чина задается в милисекундах ИЗМ.ПАРАМ – d3, d5, d7, A.3 (период, дли- ность большие) величина задается в секун-		
ВЕРХ. ГР.	Верхняя граница диапазона преобразования	Аналогично параметру НИЖН. ГР.					
выход	Тип и диа-	Bce	J.1		(020) мА		
	пазон	модифи-	J.2		(420) мА		
	выходного	кации	J.3		(05) MA		
	сигнала	ĺ	U.1		(01) B		
			U.2		(02,5) B		

			U.3	(05) B
			U.4	(010) B
АВАР. УР.	Аварийный уровень выходного сигнала.	Все модифи- кации	HL	Высокий уровень аварийного сигнала, согласно таблицы 3, 4.
			LL	Низкий уровень аварийного сигнала, согласно таблицы 3, 4.
СИГН. Ф.	Функция сигнализа- тора	Все модифи- кации	F.1	Прямая функция. Реле срабатывает, если уровень сигнала больше значения пара- метра СИГН. УР .
			F.2	Обратная функция. Реле срабатывает, если уровень сигнала меньше значения параметра СИГН. УР .
			F.3	Прямая функция с защёлкой.
			F.4	Обратная функция с защёлкой.
СИГН. УР.	Уровень срабаты- вания сигнализа- ции	Все модифи- кации	0.00-100.00	Величина задается в процентах от диапазона преобразования измеряемого параметра $AA.BB = \frac{X - HUЖH . \Gamma P.}{BEPX . \Gamma P HUЖH . \Gamma P} *100\%$ где X – значение измеряемого параметра. $= 100.00$ Величина задается в два этапа, см. Примечание.

Примечание. Четырёхразрядные величины задаются в формате *AA.BB* в два этапа. Сначала вводим первую часть *AA*. параметра, нажимаем кнопку «◀→». Вводим вторую часть параметра *BB*, нажимаем кнопку «◀→».

5.2.4 Функции сигнализатора

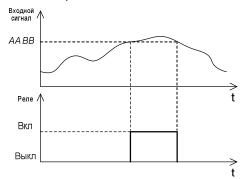


Рисунок 3 – Прямая функция сигнализатора

Условие срабатывания: реле срабатывает, если уровень сигнала больше уровня сигнализации, отключение реле, если меньше.

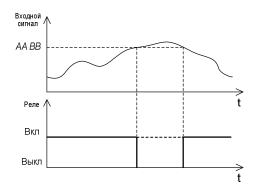


Рисунок 4 – Обратная функция

Условие срабатывания: реле срабатывает, если уровень сигнала меньше уровня сигнализации, отключение реле, если больше.

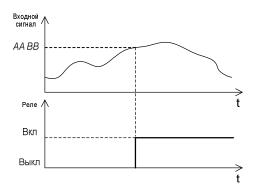


Рисунок 5 – Прямая функция с защёлкой

Условие срабатывания: реле срабатывает и защёлкивается, если входной сигнал превысил уровень сигнализации. Сброс реле осуществляется одновременным нажатием кнопок «◄ » и «△» и удерживанием более 3 с (при невыполнении условия срабатывания). Сбросить реле путем уменьшения входного сигнала или временным отключением питания преобразователя нельзя.

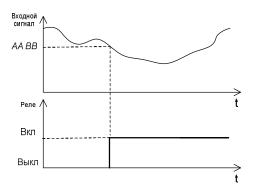


Рисунок 6 – Обратная функция с защёлкой

Условие срабатывания: реле срабатывает и защёлкивается, если входной сигнал опустился ниже уровня срабатывания сигнализации. Сброс реле осуществляется одновременным нажатием кнопок « ◄ » и «△» и удерживанием более 3 с (при невыполнении условий срабатывания). Сбросить реле путем увеличения входного сигнала или временным отключением питания преобразователя нельзя.

6 Размещение и подключение преобразователя

6.1 Размещение преобразователя

Преобразователи рассчитаны для монтажа на шину (DIN-рельс) типа NS 35/7,5/15. Крепление осуществляется металлическим кронштейном на корпусе прибора. Преобразователь должен быть установлен в месте, исключающем попадание воды, посторонних предметов, большого количества пыли внутрь корпуса. На рисунке 7 приведены габаритные размеры преобразователей.

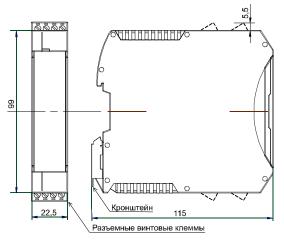


Рисунок 7 – Габаритные размеры преобразователя

Внимание! Не рекомендуется установка преобразователей рядом с источниками тепла, веществ, вызывающих коррозию.

6.2 Подключение преобразователей

Предупреждение! Подключение преобразователей должно осуществляться при отключенном питании. Электрические соединения осуществляются с помощью разъемных клеммных соединителей X1, X2, X3 и X4. Клеммы рассчитаны на подключение проводников с сечением не более 2,5 мм². Схема подключения преобразователя приведена на рисунке 8. Преобразователь может работать одновременно только с одним типом входного и выходного сигнала.

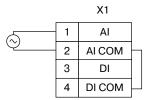


Рисунок 8 а) – Подключение аналогового входного сигнала

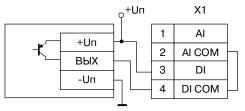


Рисунок 8 б) – Подключение датчика с PNP выходом

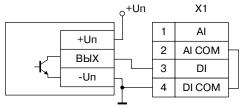


Рисунок 8 в) – Подключение датчика с NPN выходом

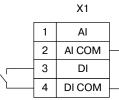


Рисунок 8 в) – Подключение датчика выходом типа «сухой контакт»

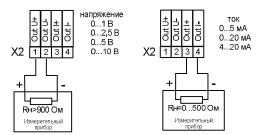


Рисунок 8 г) – Подключение выходных сигналов

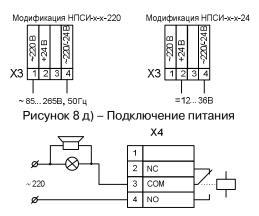


Рисунок 8 е) – Подключение сигнализации

Знак Внимание! на боковой наклейке преобразователя напоминает, что входной сигнал в допустимом диапазоне напряжений подаётся на клеммы X1.1 и X1.2. Подача входного сигнала на неприспособленные для этого клеммы может привести к аварии или повреждению преобразователя.

7 Указание мер безопасности

Эксплуатация и обслуживание преобразователя должны производиться лицами, за которыми он закреплен.

По способу защиты человека от поражения электрическим током преобразователь соответствует классу II по ГОСТ 12.2.007.0. При эксплуатации, техническом обслуживании и поверке преобразователя необходимо соблюдать требования указанного ГОСТа.

Следующие обозначения по безопасности используются в надписях на преобразователе и в данном паспорте:

Внимание! Данный символ указывает на фактор опасности, который может вызвать смерть или серьезную травму пользователя и/или повреждение преобразователя, либо другого оборудования, если не соблюдаются рекомендации, приведенные в данном паспорте.

Подключение преобразователя к электрической схеме и отключение его должно происходить при выключенном питании.

При эксплуатации преобразователя необходимо выполнять требования техники безопасности, изложенные в документации на средства измерения и оборудование, в комплекте с которыми он работает.

8 Правила транспортирования и хранения

Преобразователь должен транспортироваться в закрытых транспортных средствах любого вида в транспортной таре при условии защиты от прямого воздействия атмосферных осадков.

Условия хранения:

- температура окружающего воздуха от минус 55 до плюс 70 °C;
- относительная влажность воздуха до 95 % при температуре 35 °C;
- воздух в месте хранения не должен содержать пыли, паров кислот и щелочей, а также газов, вызывающих коррозию.

9 Гарантийные обязательства

Предприятие-изготовитель гарантирует соответствие выпускаемых образцов преобразователей всем требованиям ТУ на них при соблюдении потребителем условий эксплуатации, транспортирования и хранения.

Гарантийный срок – 36 месяцев. Гарантийный срок исчисляется с даты отгрузки (продажи) преобразователя. Документом, подтверждающим гарантию, является паспорт с отметкой предприятия-изготовителя.

Гарантийный срок продлевается на время подачи и рассмотрения рекламации, а также на время проведения гарантийного ремонта силами изготовителя в период гарантийного срока.

10 Адрес предприятия-изготовителя

Россия, 603107, Нижний Новгород, а/я 21,

тел./факс: (831) 260-03-08 (многоканальный), 466-16-04, 466-16-94.

www.contravt.ru

11 Свидетельство о приёмке

Тип преобразователя	Норми	рующи	й прес	бразоват	гель НПСИ		
Заводской номер №							
Дата выпуска	,				20 г		
Представитель ОТК_	юсть	подпись		ФИО			
Первичная поверка пр	оведена	"	"		20	Γ	
Поверитель		одпись		ФИО			

Приложение А

Преобразователи сигналов серии НПСИ. Методика поверки ПИМФ ПИМФ.411622.003 МП (НПСИ-ЧВ, НПСИ-ЧС)

А.1 Общие положения и область распространения

- **А.1.1** Настоящая методика распространяется на «Преобразователи сигналов серии НПСИ» НПСИ-ЧВ и НПСИ-ЧС, выпускаемых по техническим условиям ПИМФ.411622.003 ТУ (в дальнейшем преобразователи), и устанавливает порядок первичной и периодических поверок.
- **А.1.2** В настоящей методике использованы ссылки на следующие нормативные документы: «Преобразователи сигналов НПСИ-ЧВ (ЧС). Паспорт ПИМФ.411621.001 ПС».
- **А.1.3** Проверка преобразователей проводится для определения метрологических характеристик и установление их пригодности к применению.
- **А.1.4** Первичная поверка преобразователей проводится на предприятииизготовителе при выпуске.
- **А.1.5** Интервал между поверками **3 года**.

А.2 Операции поверки

- **А.2.1** При проведении поверки преобразователей выполняют операции, перечисленные в таблице А.2.1 (знак «+» означает необходимость проведения операции).
- **А.2.2** При получении отрицательных результатов поверки преобразователь бракуется.

Таблица А.2.1 – Перечень операций поверки

Наименование опе-	Номер п.п.	Операции поверки			
рации	Методики поверки	Первичная	Периодическая		
рации	инетодики поверки	поверка	поверка		
1 Внешний осмотр	A.6.1	+	+		
2 Опробование	A.6.2	+	+		
3 Определение					
метрологических	A.6.3	+	+		
характеристик					

А.3 Средства поверки

Перечень средств измерений, используемых при поверке, приведен в таблице A.3.1.

Таблица А.З.1 – Перечень средств измерений и вспомогательного оборудования, используемых при поверке

Номер пункта методики поверки	Наименование и тип основного средств измерений, используемых при поверке. Основные технические характеристики средства поверки					
A.6.3.1	Калибратор электрических сигналов СА51 (СА71). Основная погрешность ± 0,03 % Частотомер электронносчётный GFC-8131H частота (0,0210000) Гц. Основная погрешность ± 0,03 %					
	Наименование и тип вспомогательного оборудования используемого при поверке Генератор сигналов специальной формы GFG-8219 (0,0210000) Гц.					

Примечание: Вместо указанных в таблице А.З.1 средств измерений разреша-

ется применять другие аналогичные измерительные приборы, обеспечивающие измерения соответствующих параметров с требуемой погрешностью.

Все средства измерений, используемые при поверке, должны быть поверены в соответствии с требованиями ПР 50.2.006.

А.4 Требования по безопасности

При проведении поверки необходимо соблюдать требования безопасности, предусмотренные ГОСТ 12.2.007.0, указания по безопасности, изложенные в паспортах на преобразователи, применяемые средства измерений и вспомогательное оборудование.

А.5 Условия поверки и подготовка к ней

А.5.1 Поверка преобразователей должна проводиться при нормальных условиях:

- температура окружающего воздуха (23 \pm 5) °C;
- относительная влажность от 30 до 80 %;
- атмосферное давление от 86 до 106 кПа;
- напряжение питания \sim (220 ± 22) В, 50 Гц или \rightleftharpoons (24 ± 2,4) В в зависимости от модификации преобразователя;
- отсутствие внешних электрических и магнитных полей, влияющих на работу преобразователей.

- А.5.2 Перед началом поверки поверитель должен изучить следующие документы:
 - «Преобразователи сигналов серии НПСИ-ЧВ/ЧС. Паспорт ПИМФ.411621.001 ПС»;
 - Инструкции по эксплуатации на СИ и оборудование, используемых при поверке;
 - Инструкции по охране труда и правила техники безопасности.
 - **А.5.3** До начала поверки СИ и оборудование, используемые при поверке, должны быть в работе в течение времени самопрогрева, указанного в документации на них.

А.6 Проведение поверки

А.6.1 Внешний осмотр

При внешнем осмотре проверяется:

- соответствие комплектности преобразователя паспорту;
- состояние корпуса преобразователя;
- состояние соединителей X1-X4.

А.6.2 Опробование

Опробование предусматривает включение преобразователя и проверку работоспособности органов управления и индикации преобразователя в режиме КОНФИГУРИРОВАНИЯ (п. 5.2.3).

А.6.3 Определение метрологических характеристик

Определение метрологических характеристик проводится путем подачи входных частотно-временных сигналов от генератора импульсных сингналов и измерения выходных унифицированных сигналов постоянного тока при помощи калибратора электрических сигналов.

А.6.3.1 Определение основной погрешности преобразования временных параметров цифровых импульсных сигналов в унифицированные сигналы постоянного тока в диапазоне от 4 до 20 мА

Порядок проведения поверки:

- подключить преобразователь по схеме, приведенной на рисунке А.6.3.1;
- прогреть преобразователь при включенном питании в течение 5 мин;
- произвести конфигурирование преобразователя по параметрам из таблицы 9 паспорта:
 - измеряемый параметр частота цифрового сигнала (d.1)(мод. ЧВ);
 - диапазон выходного постоянного тока от 4 до 20 мА (J.2);
 - границы диапазона преобразования от 0 до 10000 Гц (мод. ЧВ);

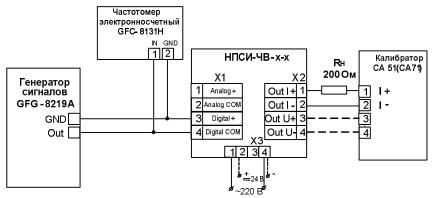


Рисунок А.6.3.1 – Подключение преобразователей НПСИ-ЧВ, вход измерения временных параметров импульсных сигналов, выход – ток

- включить питание генератора, частотомера и калибратора электрических сигналов;
 - выставить на генераторе сигналов тип сигнала меандр;

- значения частот контрольных точек $\mathbf{\textit{F}}_{\tau}$, подаваемых на цифровой вход преобразователей (мод. НПСИ-ЧВ) берутся из таблицы A.6.3.1;

Таблица A.6.3.1 – Значения контрольных точек для поверки цифрового входа преобразователя (мод.НПСИ-ЧВ)

Цифровой вход							
Частота ~ (0,02…10 000) Гц U = 5 В							
№ контрольной точки	1	2	3	4	5	6	
Контрольная точка F_{T} , Γ ц	0,02	2000	4000	6000	80000	10000	
I _{расч} , мА	4	7,2	10,4	13,6	16,8	20	

- значения частоты устанавливаемых контрольных точек $\emph{\textbf{F}}_{\mathtt{T}}$ контролировать по показаниям частотомера;
 - установить значение первой контрольной точки F_{T1} ;
- зафиксировать выходной ток преобразователя $\emph{\textbf{I}}_{\mathtt{вых}} = \emph{\textbf{I}}_{\mathtt{изм}}.$ по показаниям калибратора;
 - рассчитать погрешность измерения по выходному току по формуле (А1).

$$\Delta = | \mathbf{I}_{\text{BMX}} - \mathbf{I}_{\text{pacy}} |, \qquad \text{MA}$$
 (A1)

 $I_{\text{вых}}$ – измеренное значение выходного тока, мА;

 $I_{\rm pac}$ – расчетное значение выходного тока (таблица 6.4.1.1), мА;

- повторить операции для оставшихся пяти контрольных точек F_{T} ;
- считать преобразователь прошедшим поверку, если для всех контрольных точек погрешность Δ находится в пределах (A2):

$$\Delta = \pm 0,016 \text{ MA} \tag{A2}$$

А.6.3.2 Определение основной погрешности преобразования временных параметров аналоговых импульсных сигналов в унифицированные сигналы постоянного тока в диапазоне от 4 до 20 мА

Порядок проведения поверки:

- подключить преобразователь по схеме, приведенной на рисунке А.6.3.2;
- произвести конфигурирование преобразователя по параметрам из таблицы 9 паспорта:
 - измеряемый параметр частота аналогового сигнала (А.1)(мод.ЧВ, мод.ЧС);
 - диапазон выходного постоянного тока от 4 до 20 мА (J.2);
 - границы диапазона преобразования от 0 до 10000 Гц (мод. ЧВ);

границы диапазона преобразования от 0 до 100 Гц (мод. ЧС).

Рисунок А.6.3.2 – Подключение преобразователей НПСИ-ЧВ, НПСИ-ЧС вход измерения частотно-временных параметров аналоговых сигналов, выход – ток

- выставить на генераторе тип сигнала синусоида;
- значения частот контрольных точек F_{T} , подаваемых на аналоговый вход преобразователей (мод. НПСИ-ЧВ, мод.НПСИ-ЧС) берутся из таблицы A.6.3.2;

Таблица А.6.3.2 – Значения контрольных точек для поверки преобразователя (**мод.ЧВ, ЧС**)

Аналоговый вход							
Частота ~ (0,02…10 000) Гц U = ∼10 В (мод. ЧВ)							
№ контрольной точки	1	2	3	4	5	6	
Контрольная точка F_{τ}, Гц	0,02	2000	4000	6000	80000	10000	
Частота ~ (0,	02100)	Гц, U =	~ 10 B (мод. ЧС	()		
Частота ~ (0, № контрольной точки	02100)	Гц, U = 2	~ 10 B (мод. ЧС 4	5	6	
	1 0,02					6 100	

- значения частоты устанавливаемых контрольных точек \mathbf{F}_{T} контролировать по показаниям частотомера;
 - установить значение первой контрольной точки **F**_{T1};
- зафиксировать выходной ток преобразователя $\emph{\textbf{I}}_{\text{вых}} = \emph{\textbf{I}}_{\text{изм}}.$ по показаниям калибратора;
 - рассчитать погрешность измерения по выходному току по формуле (А1);

- повторить операции для оставшихся пяти контрольных точек F_{T} ;
- считать преобразователь прошедшим проверку, если для всех контрольных точек значение погрешности не превышает величину \pm **0,016** мА и выполняется условие (A.2).

Результаты поверки преобразователя по п. А.6.3.1, п. А.6.3.2 считать положительными, если выполняется условие (А.2) данной методики.

При отрицательных результатах поверки преобразователь в обращение не допускается (бракуется) и отправляется для проведения ремонта на предприятие изготовитель.

А.7 Оформление результатов поверки

- **А.7.1** При положительных результатах первичной поверки преобразователь признается годным к эксплуатации, о чем делается отметка в паспорте на преобразователь за подписью поверителя. При периодической поверке оформляется свидетельство о поверке в соответствии с ПР 50.2.006. Подпись поверителя заверяется поверительным клеймом.
- **А.7.2** При отрицательных результатах поверки преобразователь в обращение не допускается (бракуется), на него выдается извещение о непригодности с указанием причин.

04.10.2016 57

Дата отгрузки ""		20	r	
должность	подпи	сь ФИС)	
	12 Отм	етки в эксплу	<i>т</i> атации	
Дата ввода в эксплуатаці	ию "_	"	20	Г
Ответственный	должность	подпись	ФИО	
	М	**		