

СИСТЕМЫ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЁСКИМИ ПРОЦЕССАМИ

ПРЕОБРАЗОВАТЕЛИ СИГНАЛОВ серии НПСИ

НПСИ-ГРТП1 НПСИ-ГРТП2 НПСИ-ГРТП4

Паспорт

ПИМФ.422711.001 ПС Версия 2.0

Преобразователи зарегистрированы в Госреестре средств измерений под № 43742-15 Сертификат RU.C.32.011.A № 58903 от 05.06.2015

Россия, 603107, Нижний Новгород, а/я 21

тел./факс: (831) 260-13-08 e-mail: sales@contravt.ru

Содержание

1	Обозначение при заказе	
2	Назначение	(
3	Технические характеристики	(
4	Комплектность	12
5	Размещение и подключение преобразователя	1
6	Указание мер безопасности	2
7	Правила транспортирования и хранения	2
8	Гарантийные обязательства	20
9	Адрес предприятия-изготовителя	20
10	Свидетельство о приёмке	2
	Приложение А Преобразователи сигналов серии НПСИ.	
	Методика поверки	28
11	Отметки в эксплуатации	3

Настоящий паспорт предназначен для ознакомления с функциональными возможностями, техническими характеристиками, порядком эксплуатации, техническим обслуживанием и поверкой «Преобразователей сигналов серии НПСИ» НПСИ-ГРТП1, НПСИ-ГРТП2, НПСИ-ГРТП4 (в дальнейшем – преобразователи). Преобразователи выпускаются по техническим условиям ПИМФ.411622.003 ТУ.

Знак в тексте паспорта указывает на рекомендации, которые необходимо соблюдать, чтобы обеспечить безопасность персонала, безопасную эксплуатацию преобразователя, и не создать условия для выхода прибора из строя.

1 Обозначение при заказе

Нормирующий преобразователь НПСИ-X-МХ

Модификация:

МО – стандартная модификация

МХ – модификации по заказу потребителя

Тип измеряемого сигнала или параметра, основная функция:

ГРТП1 – гальваническое разделение токовой петли, 1 канал

ГРТП2 – гальваническое разделение токовой петли, 2 канала

ГРТП4 – гальваническое разделение токовой петли, 4 канала

Пример записи: Нормирующий преобразователь НПСИ-ГРТП1-М0 – нормирующий преобразователь сигналов измерительный, основная функция – гальваническое разделение токовой петли, 1 канал, стандартная модификация.

2 Назначение

Преобразователи НПСИ-ГРТПх предназначены для трансляции 1:1 сигнала (4...20) мА от источника к приемнику. В системах измерения источником является измерительный датчик (ИД), а приемником – измерительный прибор (ИП), в системах управления – источником – управляющее устройство (УУ), приемником – исполнительное устройство (ИУ).

Главная функция преобразователей – обеспечение гальванической изоляции между источниками и приемниками сигналов (4...20) мА. Это позволяет организовать связь измерительно-управляющих приборов (контроллеры, регуляторы) с датчиками и исполнительными устройствами (электроклапаны, частотные приводы, регуляторы мощности и т.п.), находящимися под разными потенциалами, бороться с сильными электромагнитными помехами в сигнальных цепях и т.д.

Преобразователю не требуется отдельный источник питания, прибор питается от активного источника сигнала (либо пассивного, но с внешним питанием).

Преобразователи могут применяться для разделения сигналов 1 в N.

Применение многоканальных преобразователей НПСИ-ГРТП2 и НПСИ-ГРТП4 снижает цену канала по сравнению с одноканальным НПСИ-ГРТП1. Каналы полностью независимы, неисправность одного на другие каналы никак не влияет.

Преобразователи характеризуются малой «шириной одного канала».

Рисунок 2.1 – Применение НПСИ-ГРТПх

Выполняемые функции:

- измерение входного активного унифицированного сигнала постоянного тока (4...20) мА и его преобразование в активный унифицированный выходной сигнал постоянного тока (4...20) мА;
- гальваническая изоляция входных и выходных цепей между собой, электрическая прочность изоляции ~1500 В, 50 Гц.

Преобразователь рассчитан для монтажа на DIN-рейку по EN 50022 внутри шкафов автоматики и в шкафах низковольтных комплектных устройств.

Преобразователь обеспечивает:

- гальваническую изоляцию между собой входа, выхода;
- высокую точность преобразования 0,1 %;
- высокую температурную стабильность преобразования 0,005 %/°C;
- расширенный диапазон рабочих температур от минус 40 до плюс 70 °C;
- защиту от электромагнитных помех при передаче сигналов на большие расстояния;
- передачу сигнала (4...20) мА на удаленные вторичные приборы по стандартным электротехническим проводам;
- экономию места в монтажном шкафу ширина корпуса на 1 канал: ГРТП1 8,5 мм, ГРТП2 11,3 мм, ГРТП4 5,7 мм;
- простой монтаж / демонтаж, обеспечиваемый пружинными клеммами в одноканальной модификации и разъёмными винтовыми клеммами в многоканальных.

Область применения: системы измерения, сбора и регистрации данных, контроля и регулирования в технологических процессах в нефтяной, газовой, химической отраслях промышленности, металлургии, машиностроении, а также научных исследованиях.

3 Технические характеристики

3.1 Метрологические характеристики

3.1.1 Основная погрешность

Пределы основной допускаемой приведенной погрешности преобразования входных унифицированных сигналов постоянного тока (4...20) мА в выходные унифицированные сигналы постоянного тока (4...20) мА не более \pm 0,1 % от диапазона преобразования.

3.1.2 Дополнительная погрешность

Пределы дополнительной погрешности преобразователей, вызванные изменением температуры окружающего воздуха от нормальной (23 \pm 5) °C до любой температуры в пределах рабочего диапазона, не превышают 0,2 значения предела основной погрешности на каждые 10 °C изменения температуры.

Пределы дополнительной погрешности преобразователей, вызванные изменением сопротивления нагрузки токового выхода от его номинального значения до любого в пределах допустимого диапазона сопротивлений нагрузки, не превышают 0,6 значения предела основной погрешности на каждые 100 Ом.

Пределы дополнительной погрешности преобразователей, вызванные воздействием повышенной влажности 100 % при температуре плюс 30 °C с конденсацией влаги, не превышают 0,5 значения предела основной погрешности.

3.1.3 Интервал между поверками составляет **3 года.**

3.2 Характеристика преобразования

Преобразователь имеет линейно возрастающую характеристику выходного сигнала при изменении входного сигнала.

- 3.2.1 В пределах диапазона линейного преобразования выходной сигнал постоянного тока равен входному с учетом погрешности преобразования.
- 3.2.2 Диапазон линейного преобразования составляет (3...25) мА.

3.3 Эксплуатационные характеристики

- 3.3.1 Тип входного сигнала ток (4...20) мА , активный
- 3.3.3 Падение напряжения на входе преобразователя рассчитывается по формуле $U_{\rm ex} = U_{\rm \tiny MUH} + I \times R_{\rm \tiny Ha2D}$, где

$U_{\it ex}$ – падение напряжения на входе;
$U_{{\scriptscriptstyle MUH}}$ – минимальное входное напряжение, необходимое для работы преобра
зователя ($U_{MUH} = 1,7 B$);
I – преобразуемый токовый сигнал;
$R_{{\it Hazp}}$ – сопротивление нагрузки (входное сопротивление приемника сигнала)
3.3.4 Максимально допустимый входной ток и напряжение
Максимально допустимый входной ток (при входном напряжение меньше или равном 18 В)
Максимально допустимое входное напряжение (при входном токе меньше или равном 20 мА)
Невыполнение любого из этих условий может привести к повреждению
преобразователя.
3.3.5 Минимальный входной ток
3.3.6 Тип выходного сигнала ток (420) мА, активный.
3.3.7 Максимальный выходной ток

3.3.8	Номинальное значение сопротивления нагрузки					
токово	го выхода	(100 ± 10) Ом.				
3.3.9	Допустимый диапазон сопротивлений нагрузки					
токово	го выхода	от 0 до 500 Ом.				
3.3.10	Гальваническая изоляция					
цепям Элект НПСИ	Электрическая прочность изоляции между входными и выходными цепями					
Харак	 3.3.11 Характеристики по ЭМС Характеристики помехозащищенности приведены в таблице 1. Таблица 1 – Характеристика помехозащищенности 					
Устойчивость к воздействию электростатического разряда по ГОСТ 30804.4.2 Степень жесткости						
Устойчивость к воздействию наносекундных импульсных испытаний 3 помех по ГОСТ 30804.4.4 Критерий А						

3.3.12 Параметры по электробезопасности

Преобразователи соответствуют требованиям электробезопасности по ГОСТ 12.2.007.0 и относится к классу **III.**

3.3.13 Установление режимов

C.C. TO SCIALIOESICINIC PONUMED						
Время установления рабочего режима (предварительный прогрев), не более						
3.3.14 Условия эксплуатации						
Группа по ГОСТ Р 52931						
3.3.15 Массогабаритные характеристики						
Масса преобразователя НПСИ-ГРТП1, не более						

	ритные размеры НПСИ-ГРТП2, НПСИ-ГРТГ лее	•
3.3.16	Параметры надежности	
	няя наработка на отказ, не менее ний срок службы, не менее	

4 Комплектность

В комплект поставки входят:	
Преобразователь измерительный НПСИ-ГРТПх	1 шт.
Розетки к клеммному соединителю (для модификаций НПСИ-ГРТП2/	
НПСИ-ГРТП4)	2/4 шт.
Паспорт	1 шт.
Потребительская тара	1 шт.

5 Размещение и подключение преобразователя

5.1 Размещение преобразователя

Преобразователи рассчитаны для монтажа на шину (DIN-рельс) типа NS 35/7,5/15.

Допускается плотный монтаж преобразователей без зазоров между корпусами.

Климатическое исполнение преобразователя допускает его использование в закрытых неотапливаемых помещениях, без каких либо дополнительных средств обогрева и/или кондиционирования. Тем не менее, не рекомендуется устанавливать преобразователи рядом с мощными источниками тепла, такими, как радиаторы коммутационных устройств, приводов и т.п.

Преобразователи не рассчитаны на работу в местах с высоким содержанием в воздухе агрессивных паров и газов, веществ, вызывающих коррозию.

На рисунках 5.1, 5.2 приведены габаритные размеры преобразователей.

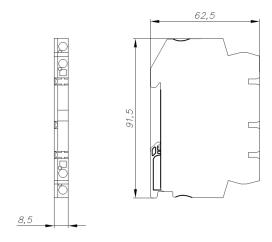


Рисунок 5.1 – Габаритные размеры НПСИ-ГРТП1

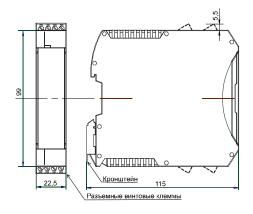


Рисунок 5.2 – Габаритные размеры НПСИ-ГРТП2, НПСИ-ГРТП4

5.2 Подключение преобразователей

Подключение преобразователей должно осуществляться при отключенном питании всей схемы. Электрические соединения осуществляются с помощью

клеммных соединителей X1, X2, X3 и X4. Клеммы рассчитаны на подключение проводников с сечением не более 2,5 мм².

Преобразователь НПСИ-ГРТП1 имеет пружинные клеммы, порядок подключения проводов к которым проиллюстрирован рисунком 5.3

Рисунок 5.3

Для подключения необходимо:

- вставить отвертку в отверстие в корпусе и отжать пружину;
- вставить провод в отверстие в корпусе на глубину 7-10 мм;
- вынуть отвертку, отпустив пружину.

Типовые схемы подключения преобразователей приведены на рисунках 5.4-5.6. На схемах подключения использованы следующие обозначения:

ИД – измерительный датчик;

УУ – управляющее устройство (регулятор, контроллер и т.п.);

ИП – измерительный прибор (контроллер, регистратор и т.п.);

ИУ – исполнительное устройство (частотный привод, клапан с МИМ и т.п.).

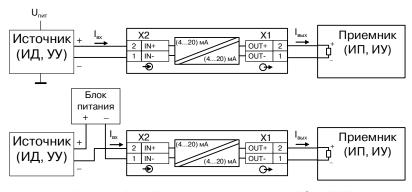


Рисунок 5.4 – Типовые подключения НПСИ-ГРТП1

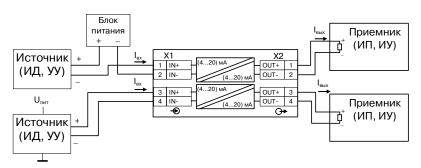


Рисунок 5.5 – Типовое подключение НПСИ-ГРТП2

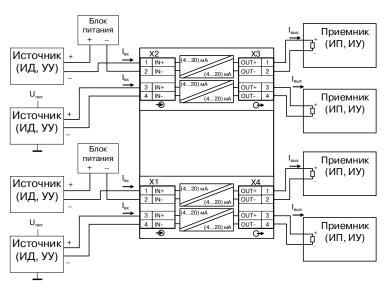


Рисунок 5.6 – Типовое подключение НПСИ-ГРТП4

Каналы преобразователей НПСИ-ГРТП2, НПСИ-ГРТП4 полностью независимы, взаимное влияние на работоспособность друг друга отсутствует.

Одно из возможных применений НПСИ-ГРТПх - это размножение сигнала от одного датчика на несколько гальванически изолированных сигналов для нескольких измерительных модулей. Примеры подключения преобразователей для такого применения приведены на рисунках 5.6 - 5.7. На рисунках не показано подключение НПСИ-ГРТП4 для такого применения, его подключение производится аналогично НПСИ-ГРТП2. При размножении сигналов от одного источника 1 в N, необходимо помнить о том, что источник должен иметь возможность обеспечивать на своем выходе напряжение не менее $U=N\times 1.7~B+22~{\rm MA}\times \sum R_{\rm hazp}$, где $\sum R_{\rm hazp}$ – сумма сопротивлений нагрузки всех выходов НПСИ-ГРТПх, осуществляющих раз-

можение входного сигнала.

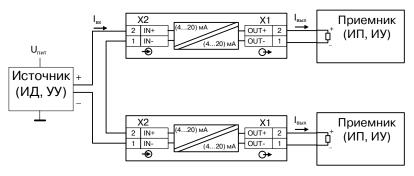


Рисунок 5.7 – Разделение сигнала от одного датчика на два гальванически изолированных при помощи двух НПСИ-ГРТП1

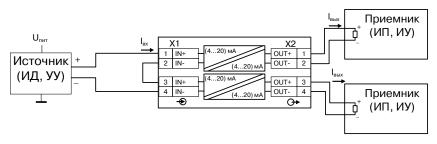


Рисунок 5.8 – Разделение сигнала от одного датчика на два гальванически изолированных при помощи НПСИ-ГРТП2

6 Указание мер безопасности

По способу защиты человека от поражения электрическим током преобразователь соответствует классу III по ГОСТ 12.2.007.0. При эксплуатации, техническом обслуживании и поверке преобразователя необходимо соблюдать требования указанного ГОСТа.

Эксплуатация и обслуживание преобразователя должны производиться лицами, за которыми он закреплен.

Подключение преобразователя к электрической схеме, его отключение, а также техническое обслуживание должно происходить при выключенном питании всей схемы.

При эксплуатации преобразователя необходимо выполнять требования техники безопасности, изложенные в документации на средства измерения и оборудование, в комплекте с которыми он работает.

7 Правила транспортирования и хранения

Преобразователь должен транспортироваться в закрытых транспортных средствах любого вида в транспортной таре при условии защиты от прямого воздействия атмосферных осадков.

Условия хранения:

- температура окружающего воздуха от минус 55 до плюс 70 °C;
- относительная влажность воздуха до 95 % при температуре 35 °C;
- воздух в месте хранения не должен содержать пыли, паров кислот и щелочей, а также газов, вызывающих коррозию.

8 Гарантийные обязательства

Предприятие-изготовитель гарантирует соответствие выпускаемых образцов преобразователей всем требованиям ТУ на них при соблюдении потребителем условий эксплуатации, транспортирования и хранения.

Гарантийный срок – 36 месяцев. Гарантийный срок исчисляется с даты отгрузки (продажи) преобразователя. Документом, подтверждающим гарантию, является паспорт с отметкой предприятия-изготовителя.

Гарантийный срок продлевается на время подачи и рассмотрения рекламации, а также на время проведения гарантийного ремонта силами изготовителя в период гарантийного срока.

9 Адрес предприятия-изготовителя

Россия, 603107, Нижний Новгород, а/я 21,

тел./факс: (831) 260-13-08

www.contravt.ru

10 Свидетельство о приёмке

Тип преобразовате	ля Нор	мирующ	ий прес	бразоват	ель НПСИ
Заводской номер N	<u> </u>				
Дата выпуска		"			20 г
Представитель ОТК	олжность	подпись		ФИО	
Первичная поверка	проведе	на "	"		20г
Поверитель	олжность	подпись		ФИО	

Приложение А

Преобразователи сигналов серии НПСИ. Методика поверки

- А.1 Общие положения и область распространения
- **А.1.1** Настоящая методика распространяется на «Преобразователи сигналов серии НПСИ» НПСИ-ГРТП1, НПСИ-ГРТП2, НПСИ-ГРТП4 выпускаемые по техническим условиям ПИМФ.411622.003 ТУ (в дальнейшем преобразователи), и устанавливает порядок первичной и периодических поверок.
- **А.1.2** В настоящей методике использованы ссылки на следующие нормативные документы: «Преобразователи сигналов серии НПСИ. НПСИ-ГРТПх. Паспорт ПИМФ.422711.001 ПС».
- **А.1.3** Проверка преобразователей проводится для определения метрологических характеристик и установление их пригодности к применению.
- **А.1.4** Первичная поверка преобразователей проводится на предприятииизготовителе при выпуске.
- **А.1.5** Интервал между поверками **3 года**.

А.2 Операции поверки

- **А.2.1** При проведении поверки преобразователей выполняют операции, перечисленные в таблице А.2.1 (знак «+» означает необходимость проведения операции).
- **А.2.2** При получении отрицательных результатов поверки преобразователь бракуется.

Таблица А.2.1 – Перечень операций поверки

Наименование	Номер п.п. Методики поверки	Операции поверки		
операции		Первичная	Периодическая	
операции	инетодики поверки	поверка	поверка	
1 Внешний осмотр	A.6.1	+	+	
2 Опробование	A.6.2	+	+	
3 Определение				
метрологических	A.6.3	+	+	
характеристик				

А.3 Средства поверки

Перечень средств измерений, используемых при поверке, приведён в таблице A.3.1.

Таблица А.З.1 – Перечень средств измерений и вспомогательного оборудования, используемых при поверке

Номер пункта методики поверки	Наименование и тип основного средств измерений, используемых при поверке. Основные технические характеристики средства поверки
	Калибратор электрических сигналов СА51 (СА71). Основная погрешность ± 0,03 %
A.6.3.1	Наименование и тип вспомогательного оборудования используемого при поверке
	Резистор С2-33H-0,125-100 Ом-5 %

<u>Примечание:</u> Вместо указанных в таблице А.З.1 средств измерений разрешается применять другие аналогичные измерительные приборы, обеспечивающие измерения соответствующих параметров с требуемой погрешностью.

Все средства измерений, используемые при поверке, должны быть поверены в соответствии с требованиями ПР 50.2.006.

А.4 Требования по безопасности

При проведении поверки необходимо соблюдать требования безопасности, предусмотренные ГОСТ 12.2.007.0, указания по безопасности, изложенные в паспортах на преобразователи, применяемые средства измерений и вспомогательное оборудование.

А.5 Условия поверки и подготовка к ней

- **А.5.1** Поверка преобразователей должна проводиться при нормальных условиях:
 - температура окружающего воздуха (23 ± 5) °C;
 - относительная влажность от 30 до 80 %;
 - атмосферное давление от 86 до 106 кПа;
 - номинальное напряжение питания СИ, указанное в документации на них;
 - отсутствие внешних электрических и магнитных полей, влияющих на работу преобразователей.

- А.5.2 Перед началом поверки поверитель должен изучить следующие документы:
 - «Преобразователи сигналов серии НПСИ. НПСИ-ГРТПх. Паспорт ПИМФ.422711.001 ПС».
 - Инструкции по эксплуатации на СИ и оборудование, используемые при поверке;
 - Инструкции по охране труда и правила техники безопасности.
 - **А.5.3** До начала поверки СИ и оборудование, используемые при поверке, должны быть в работе в течение времени самопрогрева, указанного в документации на них.

А.6 Проведение поверки

А.6.1 Внешний осмотр

При внешнем осмотре проверяется:

- соответствие комплектности преобразователя паспорту;
- состояние корпуса преобразователя;
- состояние соединителей.

А.6.2 Опробование

Опробование предусматривает включение преобразователя и его проверку по п. А.6.3.1 в любой точке.

А.6.3 Определение метрологических характеристик

Определение метрологических характеристик проводится путем подачи входных и измерения выходных унифицированных сигналов постоянного тока при помощи калибратора электрических сигналов.

А.6.3.1 Определение основной погрешности преобразования входных унифицированных сигналов постоянного тока в унифицированные сигналы постоянного тока в диапазоне от 4 до 20 мА

Порядок проведения поверки:

- подключить преобразователь по схеме, приведенной на рисунке А.6.3.1;
- подавая на вход преобразователя сигналы постоянного тока, значения которых соответствуют приведённым в таблице А.б.1, фиксировать значения выходных сигналов по показаниям калибратора.

Пределы основной допускаемой приведённой погрешности преобразования унифицированных сигналов постоянного тока от 4 до 20 мА в выходные сигналы от 4 до 20 мА должны быть не более \pm 0,1 % от диапазона измерения при сопротивлении нагрузки 100 Ом.

Количество и значения контрольных точек приведены в таблице А.6.1

Типовая схема подключения преобразователя приведена на рисунке A.6.1. Таблица A.6.1

ГРТП1							
№ контрольной точки	1	2	3	4	5	6	
Івх, мА	4	7,2	10,4	13,6	16,8	20	
Івых, мА							
$\delta(\%) = 100 \text{IBX} - \text{IBЫX} /16 $							
		ГРТП2					
№ контрольной точки	1	2	3	4	5	6	
Івх1, мА	4	7,2	10,4	13,6	16,8	20	
Івых1, мА							
$\delta(\%) = 100 \text{IBX} - \text{IBЫX} /16 $							
Івх2, мА	4	7,2	10,4	13,6	16,8	20	
Івых2, мА							
$\delta(\%) = 100 \text{IBX} - \text{IBЫX} /16 $							

ГРТП4							
№ контрольной точки	1	2	3	4	5	6	
Івх1, мА	4	7,2	10,4	13,6	16,8	20	
Івых1, мА							
δ (%) = 100 Iвх - Івых /16							
Івх2, мА	4	7,2	10,4	13,6	16,8	20	
Івых2, мА							
δ (%) = 100 Iвх - Івых /16							
Івх3, мА	4	7,2	10,4	13,6	16,8	20	
Івых3, мА							
δ (%) = 100 Iвх - Івых /16							
Івх4, мА	4	7,2	10,4	13,6	16,8	20	
Івых4, мА							
$\delta(\%) = 100 \text{IBX} - \text{IBЫX} /16$							

Порядок проверки преобразователей должен быть следующий:

- Собрать схему, приведенную на рисунке А.б.1. Нумерация клемм и типовые схемы подключения приведены в п.5.2 паспорта ПИМФ.422711.001 ПС.
- Выставить на калибраторе значение первой контрольной точки и зафиксировать выходной ток преобразователя I_{вых.}
- Рассчитать погрешность по приведённой в таблице формуле.
- Повторить перечисленные выше операции проверки для оставшихся пяти контрольных точек.
- Повторить для всех каналов преобразователя.

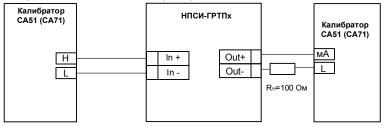


Рисунок А.6.1 – Схема для определения пределов основной приведённой погрешности каждого канала преобразователей НПСИ-ГРТПх

Результаты испытаний считаются положительными, если пределы основной допускаемой погрешности преобразования тока не превышают 0,1 % во всех точках проверки.

А.7 Оформление результатов поверки

- **А.7.1** При положительных результатах первичной поверки преобразователь признается годным к эксплуатации, о чем делается отметка в паспорте на преобразователь за подписью поверителя. При периодической поверке оформляется свидетельство о поверке в соответствии с ПР 50.2.006. Подпись поверителя заверяется поверительным клеймом.
- **А.7.2** При отрицательных результатах поверки преобразователь в обращение не допускается (бракуется), на него выдается извещение о непригодности с указанием причин.

13.03.20178

Дата отгрузки "	"		20	_ 「				
	должность	подпись	ФИО					
	11 Отметки в эксплуатации							
Дата ввода в экс	плуатацию	"	"	20r	-			
Ответственный _		олжность	подпись	ФИО				
	·	МП		5				