

Руководство по эксплуатации

KSR-GT 666

4 ... 20 mA/HART

Содержание

1	О руководстве по эксплуатации						
	1.1	Содержание	4				
	1.2	Назначение	4				
	1.3	Используемые символы	4				
2	В целях безопасности						
	2.1	Требования к персоналу	5				
	2.2	Надлежащее применение	5				
	2.3	Неправильное применение	5				
	2.4	Общие указания по безопасности	5				
	2.5	Соответствие требованиям по					
		электромагнитной совместимости	5				
	2.6	Безопасность для зон Ех	6				
3	Описание						
	3.1	Комплектность	7				
	3.2	Принцип работы	8				
	3.3	Настройка	8				
	3.4	Хранение и транспортировка	8				
4	Монтаж						
	4.1	Общие указания	10				
	4.2	Рекомендации по монтажу	11				
5	Подключение к источнику питания						
	5.1	Подготовка к подключению	14				
	5.2	Порядок подключения	15				
	5.3	Схемы подключения (однокамерный корпус).	16				
	5.4	Схемы подключения (двухкамерный корпус).	18				
	5.5	Схемы подключения (двухкамерный корпус					
		Exd)	20				
6	Настройка с помощью модуля индикации и						
	настройки						
	6.1	Краткое описание	23				
	6.2	Установка модуля индикации и настройки					
	6.3	Система настройки					
	6.4	Порядок настройки					
	6.5	Схема меню	29				
7	Обслуживание и устранение неисправностей						
	7.1	Обслуживание	32				
	7.2	Устранение неисправностей	32				

	7.3	Ремонт прибора	33		
В	Демонтаж				
	8.1	Порядок демонтажа	34		
	8.2	Утилизация	34		
9	Приложение				
	9.1	Технические данные	35		
	9.2	Размеры	46		
	93	Сертификаты	51		

1 О руководстве по эксплуатации

1.1 Содержание

Данное руководство содержит всю необходимую информацию для быстрой настройки и безопасной эксплуатации KSR-GT 666. Перед пуском прибора в эксплуатацию ознакомьтесь с изложенными здесь инструкциями.

1.2 Назначение

Данное руководство предназначено только для обученного и допущенного к работе с прибором персонала. При работе с прибором персонал должен иметь и исполнять изложенные здесь инструкции.

1.3 Используемые символы

Информация, примечания, рекомендации Символ обозначает дополнительную полезную информацию

Осторожно!

Знак предупреждает о потенциально опасной ситуации. Игнорирование такого предупреждения может нанести вред персоналу или привести к повреждению прибора.

Применение во взрывоопасных зонах

Символ обозначает специальные инструкции по применению во взрывоопасных зонах.

• Список

Ненумерованный список не подразумевает определенного порядка действий.

→ Действие

Стрелка обозначает отдельное действие.

1 Порядок

Нумерованный список подразумевает определенный порядок действий.

2 В целях безопасности

2.1 Требования к персоналу

Все описанные в данном руководстве действия должны выполняться только обученным персоналом, допущенным к работе с прибором. В целях безопасности и соблюдения гарантийных обязательств любые действия внутри прибора, помимо описанных в данном руководстве, могут осуществляться только персоналом изготовителя.

2.2 Надлежащее применение

Уровнемер KSR-GT 666 предназначен для непрерывного измерения уровня жидкостей.

Характеристику области применения KSR-GT 666 см. в гл. "Описание прибора".

2.3 Неправильное применение

Ненадлежащее или неправильное применение прибора является потенциальным источником опасности и может привести, например, к переполнению емкости или повреждению компонентов установки из-за неправильного монтажа или настройки.

2.4 Общие указания по безопасности

KSR-GT 666 соответствует современным техническим требованиям и нормам безопасности. При эксплуатации прибора необходимо строго соблюдать все установленные требования к монтажу и нормы техники безопасности, а также изложенные в данном руководстве рекомендации по безопасности.

2.5 Соответствие требованиям по электромагнитной совместимости

KSR-GT 666 соответствует требованиям EMVG (89/336/ EWG) и NSR (73/23/EWG), а также рекомендациям Namur NE 21.

Подтверждено соответствие прибора следующим нормам:

- EMVG:
 - Излучение EN 61326: 2004 (Класс В)

- Воздействие EN 61326: 2004, с Приложением A
- NSR: EN 61010-1: 2001

2.6 Безопасность для зон Ех

Для применения во взрывоопасных зонах следует соблюдать соответствующие требования и разрешения, а также учитывать соответствующие рекомендации данного руководства по эксплуатации.

3 Описание

3.1 Комплектность

Комплект поставки

В комплект поставки входят:

- Уровнемер KSR-GT 666
- Документация:
 - Руководство по эксплуатации
 - При необходимости, соответствующие сертификаты.

Составные части

KSR-GT 666 состоит из следующих частей:

- Присоединение и измерительный зонд
- Корпус с блоком электроники
- Крышка корпуса с модулем индикации и настройки (вариант)

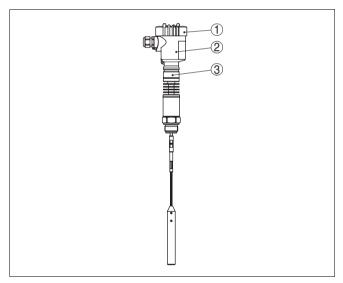


Рис. 1: KSR-GT 666 в исполнении с тросом и пластиковым корпусом

- 1 Крышка корпуса с модулем индикации и настройки (вариант)
- 2 Корпус с блоком электроники
- 3 Присоединение

3.2 Принцип работы

Область применения

Уровнемер KSR-GT 666 с коаксиальным, стержневым или тросовым измерительным зондом предназначен для непрерывного измерения уровня сред с температурой от -200°C до +400°C.

Прибор применим в любых отраслях промышленности для измерения уровня жидкостей.

Принцип действия

Высокочастотные микроволновые импульсы направляются вдоль по стальному тросу или стержню. Достигнув поверхности продукта, микроволновые импульсы отражаются от нее. Исходя из времени прохождения импульса, встроенная электроника рассчитывает значение расстояния.

Питание

Двухпроводная система электроники с выходом 4 ... 20 mA/ НАRT с подачей питания и передачей измеренных значений по одному и тому же кабелю.

Диапазон напряжения питания зависит от исполнения прибора (см. "*Технические данные*" в "*Приложении*".

3.3 Настройка

Для настройки KSR-GT 666 могут использоваться три различных устройства:

- модуль индикации и настройки
- коммуникатор HART.

Введенные параметры сохраняются в памяти KSR-GT 666, а также они могут быть сохранены в памяти модуля индикации и настройки.

3.4 Хранение и транспортировка

Упаковка

Прибор поставляется в упаковке, которая при транспортировке обеспечивает его защиту в соответствии с DIN EN 24180.

Упаковка прибора в стандартном исполнении состоит из экологически чистого и поддающегося переработке картона. Для упаковки приборов в специальном исполнении также применяется пенополиэтилен и полиэтиленовая пленка, которые можно утилизировать на специальных перерабатывающих предприятиях.

Температура хранения и транспортировки

- Температура хранения и транспортировки: см. "Приложение – Технические данные – Условия окружающей среды"
- Относительная влажность 20 ... 85 %

4 Монтаж

4.1 Общие указания

Монтажное положение

Монтажное положение прибора должно быть удобным для монтажа и подключения, а также доступным для установки модуля индикации и настройки. Корпус прибора можно повернуть без инструмента на 330°. Модуль индикации и настройки также можно установить в одном из четырех положений со сдвигом на 90°.

Обращение с прибором

Корпус прибора с резьбовым присоединением не разрешается использовать для заворачивания резьбы! В противном случае может быть повреждена вращательная механика корпуса.

Для заворачивания резьбы следует использовать находящийся над ней шестигранник.

Наружная влага

Использовать рекомендуемый кабель (см. "Подключение κ источнику питания") и туго затянуть кабельный ввод.

Для защиты KSR-GT 666 от попадания влаги рекомендуется соединительный кабель перед кабельным вводом направить вниз, чтобы влага от дождя или конденсата могла с него стекать. Данные рекомендации применимы при монтаже на открытом воздухе, в помещениях с повышенной влажностью (например, там, где осуществляется очистка), а также на емкостях с охлаждением или подогревом.

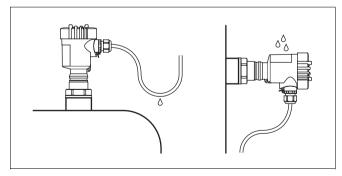


Рис. 2: Меры против попадания влаги

Диапазон измерения

Базовой плоскостью измерительного диапазона датчиков является поверхность уплотнения присоединительной резьбы или фланца.

Следует учитывать, что существует некоторое минимальное расстояние от базовой плоскости датчика, а также в конце зонда в зоне груза у тросовой версии, где измерение невозможно (мертвая зона). Такие блокированные расстояния для разных исполнений прибора см. п. "Технические данные".

Давление

При избыточном или пониженном давлении в емкости присоединение следует уплотнить. Материал уплотнения должен быть стойким к измеряемому продукту. Максимальное допустимое давление - см. в разделе "Технические данные" в "Приложении" или на шильдике датчика.

4.2 Рекомендации по монтажу

Монтажное положение

KSR-GT 666 следует монтировать так, чтобы во время работы измерительный зонд не касался стенок емкости или конструкций в ней.

KSR-GT 666 в исполнении с тросом или стержнем следует монтировать так, чтобы расстояние от стенки емкости или конструкций в ней составляло не менее 300 мм.

Во время работы измерительный зонд не должен касаться стенок емкости или конструкций в ней. При необходимости конец зонда можно закрепить.

В емкостях с коническим днищем лучше монтировать уровнемер по центру емкости, что обеспечивает возможность измерения на ее полную глубину. Однако для прибора в исполнении с тросом следует учитывать, что измерение до самого конца зонда невозможно из-за наличия нижней мертвой зоны у тросовой версии (см. п. "Технические данные").

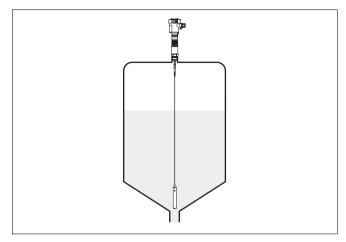


Рис. 3: Емкость с коническим днищем

Поток продукта

Измерительный зонд KSR-GT 666 не должен подвергаться сильным боковым нагрузкам, поэтому для монтажа прибора следует выбирать такое положение, где не будет помех в виде наливных отверстий, мешалок и т. п., создающих боковую нагрузку.

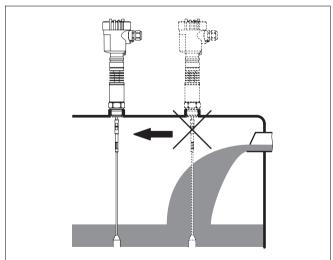


Рис. 4: Боковая нагрузка

Закрепление зонда

Если во время работы из-за волнения продукта или действия мешалки измерительный зонд может касаться стенки емкости, то его следует закрепить.

Для этой цели в натяжном грузе имеется резьба (M12) для рым-болта.

При закреплении измерительного троса не рекомендуется его сильно натягивать. Следует избегать больших натягивающих нагрузок.

Необходимо исключить неопределенное соединение троса и емкости, т.е.соединение должно быть либо надежно заземлено, либо надежно заизолировано. Любое нарушение этого условия приведет к ошибкам измерения.

Теплоизоляция

Для предупреждения перегрева электроники из-за тепловой радиации уровнемер KSR-GT 666 рекомендуется вмонтировать в теплоизоляцию емкости.

При этом теплоизоляция на датчике не должна превышать определенной высоты.

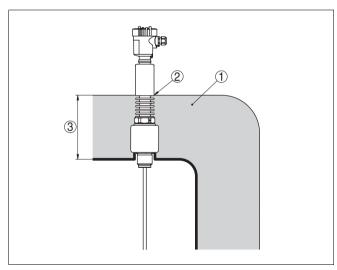


Рис. 5: Емкость с теплоизоляцией

- 1 Теплоизоляция
- 2 Максимальная высота теплоизоляции
- 3 Теплоизоляция емкости: размеры см. в Приложении в п. "Размеры"

5 Подключение к источнику питания

5.1 Подготовка к подключению

Техника безопасности

Указания по технике безопасности при подключении:

- Подключать только при отсутствии напряжения
- если возможны перенапряжения, установить защиту от перенапряжений.

Меры безопасности для зон Ex

Для применения во взрывоопасных зонах следует учитывать соответствующие нормы и требования к датчикам и источникам питания.

Выбор питания

Подача питания и передача токового сигнала осуществляются по одному и тому же двухпроводному кабелю. Напряжение питания зависит от исполнения прибора (см. "Технические данные" в Приложении).

Между цепью питания и сетью должна быть обеспечена безопасная развязка в соответствии с DIN VDE 0106, часть 101.

В отношении напряжения питания следует учитывать следующее:

- возможность уменьшения выходного напряжения источника питания под номинальной нагрузкой (при токовом выходе датчика в состоянии отказа 20,5 mA или 22 mA)
- влияние дополнительных устройств в токовой цепи (см. значения нагрузки в п. Технические данные).

Соединительный кабель

KSR-GT 666 подключается с помощью стандартного двухпроводного неэкранированного кабеля с внешним диаметром 5 ... 9 мм, обеспечивающим эффект уплотнения кабельного ввода. В случае возможности электромагнитных помех рекомендуется использовать экранированный кабель.

Кабельный экран и заземление

Экран кабеля с обеих сторон соединить с потенциалом земли. В самом датчике экран должен быть подключен непосредственно к внутренней клемме заземления. Клемма заземления на внешней стороне корпуса должна быть низкоомно соединена с уравнителем потенциалов.

Если вероятно возникновение уравнительных токов, то соединение со стороны формирования сигнала должно осуществляться через керамический конденсатор (напр.,

1 нФ, 1500 В).Тем самым подавляется низкочастотный уравнительный ток, но сохраняется защитный эффект против высокочастотных помех.

Соединительный кабель для зон Ex

Для применения во взрывоопасных зонах соединительный кабель должен отвечать соответствующим требованиям. Следует исключить возможность уравнительных токов в кабельном экране. При заземлении с обеих сторон это достигается за счет применения конденсатора или отдельного уравнителя потенциалов.

5.2 Порядок подключения

Выполнить следующее:

- 1 Отвинтить крышку корпуса.
- Снять модуль индикации и настройки, если он установлен, повернув его слегка влево.
- 3 Ослабить гайку кабельного ввода.
- 4 Удалить примерно 10 см обкладки кабеля, концы проводов зачистить примерно на 1 см.
- 5 Вставить кабель в прибор через кабельный ввод.
- 6 Открыть контакты, приподняв рычажки отверткой (см. рис. ниже).
- 7 Вставить концы проводов в контакты в соответствии со схемой подключения.

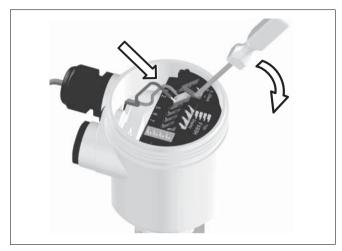


Рис. 6: Подключение к источнику питания: шаги 6 и 7

- Закрыть контакты, нажимая на рычажки, пружина контакта закрывается со щелчком.
- 9 Слегка потянув за провода, проверить надежность их закрепления в контактах.
- 10 Подключить экран к внутренней клемме заземления, а внешнюю клемму заземления соединить с уравнителем потенциалов.
- 11 Туго затянуть гайку кабельного ввода, уплотнительное кольцо должно полностью облегать кабель.
- 12 Завинтить крышку корпуса.

Прибор подключен к источнику питания.

5.3 Схемы подключения (однокамерный корпус)

Рисунки и схемы ниже действительны для приборов в исполнении без взрывозащиты, а также для приборов в искробезопасном исполнении (Ex ia).

Общий вид

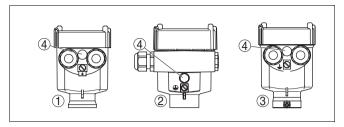


Рис. 7: Однокамерный корпус из различных материалов

- 1 Пластик
- 2 Алюминий
- 3 Нержавеющая сталь
- 4 Фильтр для выравнивания давления

Отсек электроники и подключения

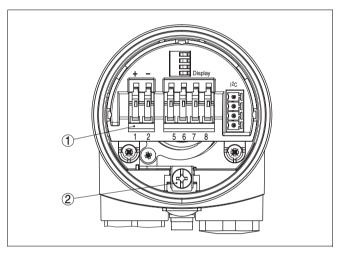


Рис. 8: Отсек электроники и подключения в однокамерном корпусе

- 1 Контакты для подключения питания
- 2 Клемма заземления для подключения экрана кабеля

Схема подключения

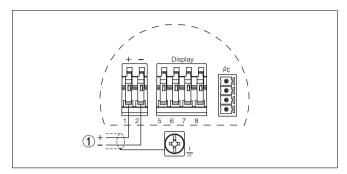


Рис. 9: Схема подключения (однокамерный корпус)

1 Питание/Выход сигнала

5.4 Схемы подключения (двухкамерный корпус)

Рисунки и схемы ниже действительны для приборов в исполнении без взрывозащиты, а также для приборов в искробезопасном исполнении (Ex ia). Схемы для исполнения со взрывонепроницаемой оболочкой (Exd) даны в следующем параграфе.

Общий вид

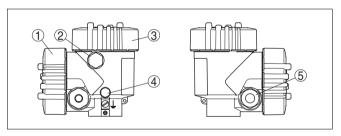


Рис. 10: Двухкамерный корпус

- Крышка отсека подключения
- 2 Заглушка
- 3 Крышка отсека электроники
- 4 Фильтр для выравнивания давления
- 5 Кабельный ввод или штекерный разъем

Отсек электроники

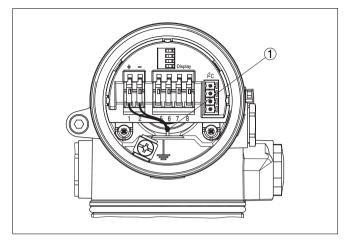


Рис. 11: Отсек электроники в двухкамерном корпусе
1 Внутреннее соединение с отсеком подключения

Отсек подключения

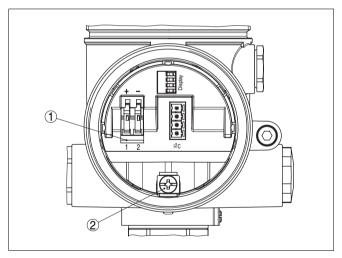


Рис. 12: Отсек подключения в двухкамерном корпусе

- Контакты для подключения питания
- 2 Клемма заземления для подключения экрана кабеля

Схема подключения

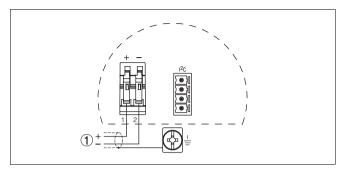


Рис. 13: Схема подключения для двухкамерного корпуса

1 Питание/Выход сигнала

5.5 Схемы подключения (двухкамерный корпус Exd)

Общий вид

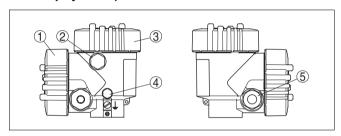


Рис. 14: Двухкамерный корпус

- 1 Крышка отсека подключения
- 2 Заглушка
- 3 Крышка отсека электроники
- 4 Фильтр для выравнивания давления
- 5 Кабельный ввод или штекерный разъем

Отсек электроники

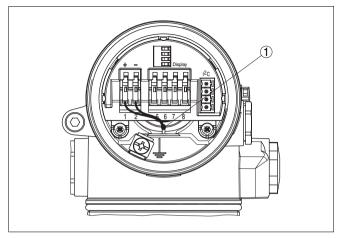


Рис. 15: Отсек электроники в двухкамерном корпусе
1 Внутреннее соединение с отсеком подключения

Отсек подключения

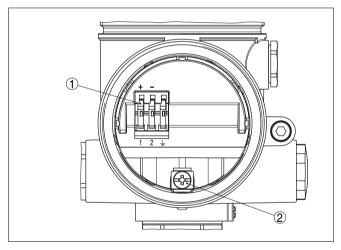


Рис. 16: Отсек подключения в двухкамерном корпусе Exd 1 Контакты для подключения питания и экрана кабеля 2 Клемма заземления для подключения экрана кабеля

Схема подключения

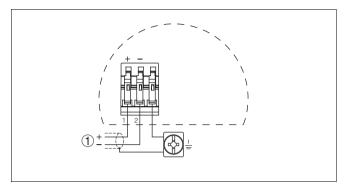


Рис. 17: Схема подключения для двухкамерного корпуса Exd 1 Питание/Выход сигнала

6 Настройка с помощью модуля индикации и настройки

6.1 Краткое описание

Назначение/конфигурация

Модуль индикации и настройки служит для индикации измеренных значений, настройки и диагностики. Модуль может быть установлен в любом датчике семейства GT 6 в однокамерном, а также в двухкамерном корпусе (в отсеке электроники или отсеке подключения).

6.2 Установка модуля индикации и настройки

Модуль индикации и настройки можно установить и снять в любой момент. Для этого не нужно отключать питание.

Выполнить следующее:

- 1 Отвинтить крышку корпуса.
- 2 Установить модуль индикации и настройки в желаемое положение на электронике (возможны четыре положения со сдвигом на 90°).
- Установить модуль индикации и настройки на электронике и слегка повернуть вправо до щелчка.
- 4 Туго завинтить крышку корпуса со смотровым окошком.

Для демонтажа выполнить описанные выше действия в обратном порядке.

Питание модуля индикации и настройки осуществляется от датчика.

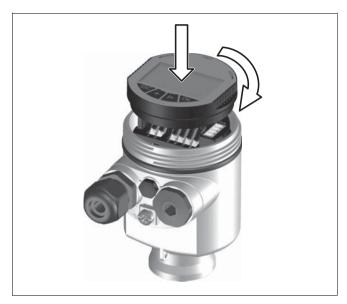


Рис. 18: Установка модуля индикации и настройки

Примечание:

При использовании установленного в KSR-GT 666 модуля индикации и настройки для местной индикации требуется более высокая крышка корпуса со смотровым окошком.

6.3 Система настройки

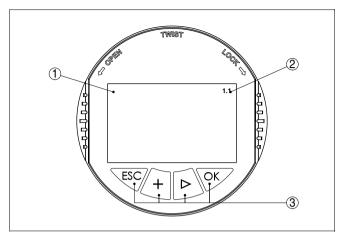


Рис. 19: Дисплей и клавиши настройки

- 1 ЖК-дисплей
- 2 Индикация номера пункта меню
- 3 Клавиши настройки

Функции клавиш

Клавиша [ОК]:

- переход к просмотру меню
- подтверждение выбора меню
- редактирование параметра
- сохранение значения

Клавиша [->]:

- смена меню
- перемещение по списку
- выбор позиции для редактирования

Клавиша [+]:

изменение значения параметра

Клавиша [ESC]:

- отмена ввода
- возврат в прежнее меню

Система настройки

Прибор настраивается с помощью четырех клавиш и дисплея модуля индикации и настройки. Функции клавиш показаны на рисунке выше. Через 10 минут после последнего нажатия любой клавиши автоматически происходит возврат к отображению измеренных значений. Введенные значения, не подтвержденные нажатием [OK], будут потеряны.

6.4 Порядок настройки

Включение питания

В течение прибл. 30 сек. после подключения KSR-GT 666 к источнику питания или после восстановления напряжения осуществляется самопроверка прибора и происходит следующее:

- внутренняя проверка электроники,
- индикация типа устройства, версии ПО и тега (обозначения) датчика,
- кратковременный (10 сек.) скачок выходного сигнала до установленного значения отказа.

Затем отображается текущее измеренное значение и выдается соответствующий токовый сигнал¹⁾.

Задание адреса для работы в многоточечном режиме НАВТ

При работе в многоточечном режиме HART (несколько датчиков на одном входе) сначала необходимо осуществить установку адресов (см. инструкцию для модуля индикации и настройки).

Режим HART Стандартный адрес 0

Установка параметров

При измерении с помощью KSR-GT 666 определяется расстояние от датчика до поверхности продукта. Для отображения уровня нужно задать соответствие между расстоянием до поверхности и ее уровнем в процентах. С этой целью вводятся значения расстояния для полной и пустой емкости. Если эти значения неизвестны, то можно также задать значения расстояния для, например, 10 % и 90 %. Базовой плоскостью для значений расстояния является поверхность уплотнения резьбы или нижняя поверхность фланца. Данная установка используется для вычисления реального уровня, а также для ограничения рабочего диапазона датчика до требуемого интервала.

Для установки Min./Max. фактический уровень не имеет значения: такая настройка всегда осуществляется без изменения уровня и может проводиться еще до монтажа прибора на месте измерения.

Для установки оптимальных параметров измерения необходимо, последовательно выбирая пункты меню, ввести соответствующие значения.

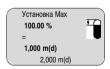
Эти значения соответствуют фактическому уровню и уже выполненным установкам, напр., заводской установке.

Установка параметров начинается с меню "Базовая установка".

Установка Min

Выполнить следующее:

1 Нажатием *[ОК]* перейти от индикации измеренных значений в главное меню.


2 С помощью [->] выбрать меню Базовая установка и подтвердить нажатием [OK]. На дисплее появится меню "Установка Min".

- 3 Для изменения процентного значения нажать [OK], с помощью [->] установить курсор на нужную позицию. С помощью [+] ввести необходимое процентное значение и подтвердить [OK]. Курсор теперь переходит на значение расстояния.
- 4 Ввести соответствующее значение расстояния в метрах для пустой емкости (напр., расстояние от датчика до дна емкости).
- 5 Сохранить установку клавишей [OK] и с помощью [->] перейти к установке Мах.

Установка Мах

Выполнить следующее:

 Для изменения процентного значения нажать [OK], с помощью [->] установить курсор на нужную позицию.
 С помощью [+] ввести необходимое процентное значение и подтвердить [OK]. Курсор теперь переходит на значение расстояния.

- 2 Ввести соответствующее значение расстояния в метрах для полной емкости. Максимальный уровень должен быть ниже мертвой зоны.
- 3 Сохранить установку нажатием [OK].

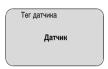
Демпфирование

Для устранения колебаний значений на дисплее (напр., в связи с волнением поверхности продукта) можно скорректировать время интеграции, установив его в пределах от 0 до 999 секунд. При этом следует учитывать, что время реакции полного измерения и задержки реакции датчика на быстрые изменения измеряемых величин также увеличится. Обычно для выравнивания дисплея измеренных значений достаточно нескольких секунд.

После ввода необходимых параметров сохранить установку и с помощью клавиши [->] перейти к следующему пункту меню.

Кривая линеаризации

Линеаризация необходима в том случае, когда требуется выводить данные измерения в единицах объема, а объем изменяется нелинейно по отношению к уровню заполнения емкости, например, когда емкость горизонтальная цилиндрическая или сферическая. Для таких типов емкостей заданы кривые линеаризации, представляющие отношение между уровнем заполнения в процентах и объемом емкости. При активировании соответствующей кривой линеаризации на дисплей выводятся правильные процентные значения объема. Для отображения объема не в процентах, а, например, в литрах или килограммах, необходимо в меню "Дисплей" задать пересчет.



После ввода необходимых параметров сохранить установку и с помощью клавиши [->] перейти к следующему пункту меню.

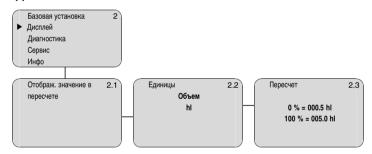
Тег датчика

В этом пункте меню можно ввести ясное обозначение датчика, например, наименование места измерения, продукта или емкости. В цифровых системах и в документации для больших установок такое обозначение вводится для точной идентификации отдельных мест измерения.

На этом базовая установка завершена и с помощью клавиши *[ESC]* можно вернуться в главное меню.

Дополнительные установки

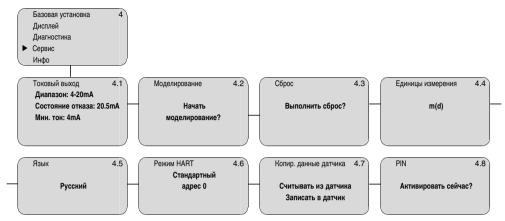
Дополнительные возможности настройки и диагностики, например: пересчет единиц дисплея, моделирование или эхо-кривые, - показаны на представленной далее схеме меню. Подробное описание меню приведено в инструкции по работе с модулем индикации и настройки.



6.5 Схема меню

Базовая установка

Дисплей



Диагностика

Сервис

Инфо

7 Обслуживание и устранение неисправностей

7.1 Обслуживание

При нормальной эксплуатации KSR-GT 666 не требует особого обслуживания.

7.2 Устранение неисправностей

Проверка сигнала 4 ... 20 mA

Подключить переносной мультиметр в подходящем измерительном диапазоне в соответствии со схемой подключения.

- ? Сигнал 4 ... 20 mA неустойчивый
 - Низкое напряжение питания или высокое сопротивление нагрузки
 - → Проверить и, при необходимости, отрегулировать
- **?** Сигнал 4 ... 20 mA отсутствует
 - Неправильное подключение к источнику питания
 - → Проверить подключение согласно п. "Порядок подключения" и, при необходимости, исправить в соответствии с п. "Схемы подключения"
 - Отсутствует питание
 - → Проверить целостность кабелей и, при необходимости, отремонтировать
 - Низкое напряжение питания или высокое сопротивление нагрузки
 - → Проверить и, при необходимости, отрегулировать
- ? Токовый сигнал выше 22 mA или ниже 3,6 mA
 - Дефектный блок электроники
 - → Заменить устройство или отправить его на ремонт

При применении во взрывоопасных зонах следует учитывать требования к межкомпонентным соединениям искробезопасных цепей.

Сообщения об ошибках на модуле индикации и настройки

? E013

- Отсутствует измеренное значение
- → Датчик в фазе загрузки
- → Датчик не обнаруживает эхо-сигнал, напр., из-за ошибки монтажа или неправильной установки параметров
- → Длина датчика задана неверно

? E017

- Диапазон установки слишком малый
- → Переустановить диапазон, увеличив интервал между установками Min и Max

? F036

- Отсутствует исполнимое ПО датчика
- → Обновить ПО датчика или отправить прибор на ремонт

? E042/E043

- Аппаратная ошибка, дефект электроники
- → Заменить устройство или отправить его на ремонт

7.3 Ремонт прибора

При необходимости ремонта KSR-GT 666 сделать следующее:

- Прибор очистить и упаковать для транспортировки
- К прибору приложить описание неисправности, условий работы и продукта
- Приложить имеющиеся данные по безопасности
- Отправить прибор на адрес поставщика или изготовителя.

8 Демонтаж

8.1 Порядок демонтажа

Внимание!

При наличии опасных рабочих условий (давление, высокая температура, агрессивные или ядовитые продукты) демонтаж прибора следует выполнять с учетом соответствующих норм техники безопасности.

Для демонтажа прибора выполнить действия, описанные в пп. "Монтаж" и "Подключение к источнику питания", в обратном порядке.

8.2 Утилизация

KSR-GT 666 изготовлен из материалов, которые могут быть переработаны на специальных предприятиях. Конструкция прибора позволяет легко отделить электронный блок. Прибор следует утилизировать согласно установленным нормам и требованиям.

Материалы: см. "Технические данные"

При невозможности утилизировать прибор самостоятельно, обращайтесь к изготовителю.

9 Приложение

9.1 Технические данные

Общие сведения

Материал 316 L соответствует нержавеющей стали 1.4404 или 1.4435

Материал контактирующих с продуктом деталей (исполнение для -20° ... +250°C)

– Присоединение (коаксиальное 316L. Hastellov C22 (2.4602) и PEEK GF 30

исполнение)

Присоединение (стержневое
 316L, Hastelloy C22 (2.4602) и РЕЕК GF 30

исполнение)

Присоединение (тросовое
 316L и PEEK GF 30

исполнение)

Трубка ø 21,3 ммСтержень ø 6 ммЗ16L, Hastelloy C22 (2.4602)З16L, Hastelloy C22 (2.4602)

- Tpoc Ø 4 MM 1.4401 (316)

– Уплотнение Kalrez 6375

Материал контактирующих с продуктом деталей (исполнение для -200° ... 400°C)

- Присоединение (коаксиальное 316L, Hastelloy C22 (2.4602) и

исполнение) алюмоксидная керамика 99,7% (Al₂O₃)

– Присоединение (стержневое 316L, Hastelloy C22 (2.4602) и

исполнение) алюмоксидная керамика 99,7% (Al₂O₃)

- Присоединение (тросовое 316L. Hastellov C22 (2.4602) и

исполнение) алюмоксидная керамика 99,7% (Al₂O₃)

Трубка Ø 43 ммСтержень Ø 16 мм316L

- Трос Ø 6 мм 1.4401 (316)

– Уплотнение Графит

Материалы не контактирующих с продуктом деталей

- Корпус Пластик PBT (полиэстер), алюминий с

порошковым покрытием, нерж. сталь 316 L

- Уплотнение между корпусом и NBR (корпус из нерж. стали), силикон

крышкой корпуса (корпус из пластика/алюминия)

Смотровое окошко в крышке
 Поликарбонат

корпуса (вариант)

Клемма заземления 316L

Вес (исполнение -20° ... +250°С)

Пластиковый корпус
 760 г

Алюминиевый корпус 1170 г

 Алюминиевый двухкамерный корпус 	1470 г					
 Корпус из нержавеющей стали 	1530 г					
Трубка ø 21,3 мм	прибл. 1000 г/м					
Стержень Ø 6 мм	прибл. 220 г/м					
Трос Ø 4 мм	прибл 80 г/м					
 Груз (только для тросовой версии) 	прибл. 325 г					
Вес (исполнение -200° +400°С)						
 Пластиковый корпус 	7200 г					
 Алюминиевый корпус 	7600 г					
 Алюминиевый двухкамерный корпус 	7900 г					
 Корпус из нержавеющей стали 	7960 г					
Трубка ø 43 мм	прибл. 1000 г/м					
Стержень ø 16 мм	прибл. 1600 г/м					
Трос Ø 6 мм	прибл. 170 г/м					
 Груз (только для тросовой версии) 	прибл. 730 г					
Длина (L)						
– Трубка ø 43 мм	0,3 6 м					
Трубка ø 21,3 мм	0,3 6 м					
Стержень ø 16 мм	0,5 6 м					
Стержень Ø 6 мм	0,5 4 м					
Трос Ø 6 мм	1 60 м					
Трос Ø 4 мм	1 32 м					
Боковая нагрузка						
– Трубка ø 43 мм	100 Нм					
Трубка ø 21,3 мм	60 Нм					
Стержень Ø 16 мм	30 Нм					
Стержень Ø 6 мм	4 Нм					
Макс. растягивающая нагрузка на трос ø 6 мм	10 кН					
Макс. растягивающая нагрузка на трос ø 4 мм	2,5 кН					

Ограничение тока

Выходные характеристики

Выходной сигнал 4 ... 20 mA/HART

Разрешающая способность 1,6 µА

Сигнал неисправности Токовый выход неизменен, 20,5 mA, 22 mA,

< 3,6 mA (устанавливаемый)

22 mA

Нагрузка См. диаграмму нагрузки в п. "Питание"

0 ... 999 s, устанавливаемое

Время интеграции (63 % входной

величины)

Исполненная рекомендация Namur NE 43

Входные характеристики

Измеряемая величина Уровень жидкостей

Мин. диэлектрическая постоянная Er >1,4

(коаксиальное исполнение)

Мертвая зона (коаксиальное исполнение)

– сверху 50 мм

– снизу0 мм

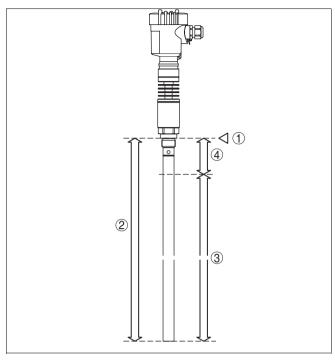


Рис. 20: Диапазон измерения KSR-GT 666 в исполнении с коаксиальной трубкой

- 1 Базовая плоскость
- 2 Длина измерительного зонда
- 3 Диапазон измерения
- 4 Верхняя мертвая зона

Мин. диэлектрическая постоянная Er >1,7

(исполнение с тросом/стержнем) Мертвая зона (стержневое исполнение)

сверхуснизумм

Мертвая зона (тросовое исполнение)

сверху150 мм

– снизу250 мм (груз) + 100 мм

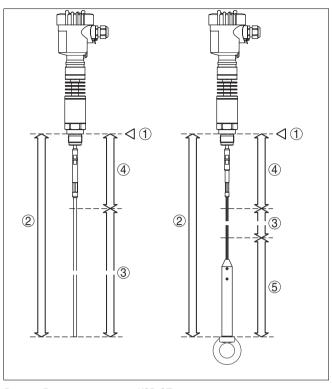


Рис. 21: Диапазон измерения KSR-GT 666 в исполнении с тросом и стержнем

- 1 Базовая плоскость
- 2 Длина измерительного зонда
- 3 Диапазон измерения
- 4 Верхняя мертвая зона
- 5 Нижняя мертвая зона (только при тросовом исполнении)

Условия при определении точности (соотв. DIN EN 60770-1)

Условия по DIN EN 61298-1

– Температура 18 ... +30°C

– Относительная влажность 45 ... 75 %

– Давление воздуха 860 ... 1060 mbar (86 ... 106 kPa)

Характеристики и точность измерения

Исходные условия монтажа

– Фланец DN 100

Мин. расстояние до конструкций 500 мм

Отражающая поверхность

Температурный дрейф (токовый выход) Точность Металлическая плита Ø 1 м, не для коаксиального исполнения 0,06 %/10 К относительно тах. диапазона измерения См. диаграмму

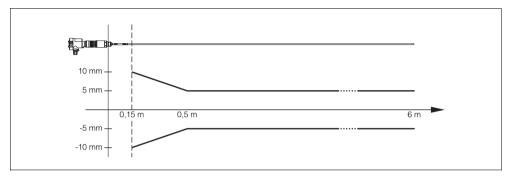


Рис. 22: Точность - стержневое исполнение (-20°C ... +250°C / -20°C ... +400°C)

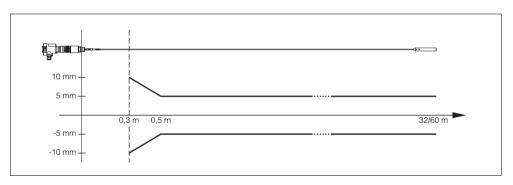


Рис. 23: Точность - тросовое исполнение (-20°C ... +250°C / -20°C ... +400°C)

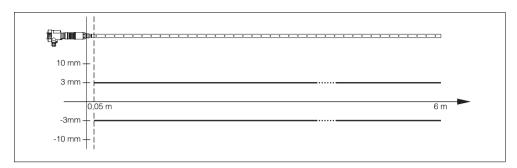


Рис. 24: Точность - коаксиальное исполнение (-20°С ... +250°С)

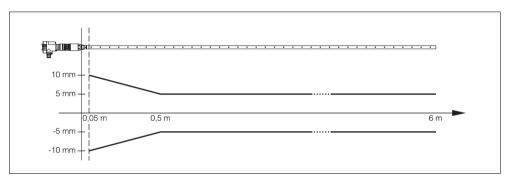


Рис. 25: Точность - коаксиальное исполнение (-200°С ... +400°С)

Окружающие условия

Температура окружающей среды, хранения и транспортировки

- − без модуля индикации и -40 ... +80°С настройки
- модуль индикации и настройки -20 ... +70°C

Рабочие условия

Давление процесса

- Стандартное исполнение -1 ... 100 бар (-100 ... 10000 кПа), в зависимости от присоединения
- Высокотемпературное -1 ... 400 бар (-100 ... 40000 кПа), в исполнение зависимости от присоединения

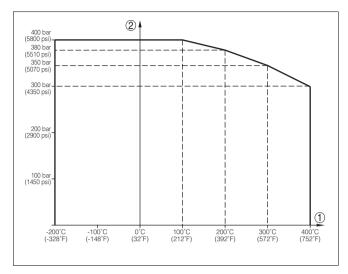


Рис. 26: Исполнение для высоких температур: давление процесса - температура продукта

- 1 Температура продукта
- 2 Давление процесса

Температура процесса

 Стандартное исполнение -20° ... +250°С (уплотнение Kalrez 6375)

Исполнение для высоких -200° ... +400°С температур (уплотнение - графит)

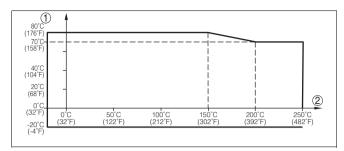


Рис. 27: Температура окружающей среды - температура продукта (исполнение -20° ... 250°C)

- 1 Температура окружающей среды
- 2 Температура продукта (в зависимости от материала уплотнения)

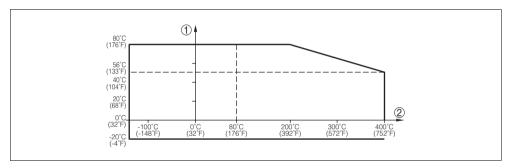


Рис. 28: Температура окружающей среды - температура продукта (исполнение -200° ... 400°C)

- 1 Температура окружающей среды
- 2 Температура продукта (в зависимости от материала уплотнения)

Электромеханические данные

Кабельный ввод

- Однокамерный корпус

 1х кабельный ввод M20x1,5 (кабель ø 5 ... 9 мм), 1х заглушка M20x1,5

или:

- 1х колпачок ½ NPT, 1х заглушка ½ NPT
- 1х кабельный ввод M20х1,5 (кабель ø 5 ... 9 мм), 1х заглушка M20х1,5

или:

• 1х колпачок ½ NPT, 1х заглушка ½ NPT

для провода сечением 2,5 мм²

Двухкамерный корпус

Пружинные контакты

Модуль индикации и настройки

Питание и передача данных От датчика, через покрытые золотом

скользящие контакты (шина I²C)

Жидкокристаллический точечно-Дисплей

матричный

Элементы настройки 4 клавиши

Климатическое исполнение

не установлен в датчике

установлен в датчике без крышки

IP 20

IP 40

Материалы

ABS Корпус

Смотровое окошко Полиэстровая пленка

Питание

Напряжение питания

14 ... 36 V DC без взрывозащиты FFx ia 14 ... 30 V DC EExd ia 20 ... 36 V DC

Допустимая остаточная пульсация

<100 Hz $U_{ss} < 1 \text{ V}$ 100 Hz ... 10 kHz U_{ss} <10 mV

Нагрузка см. диаграмму

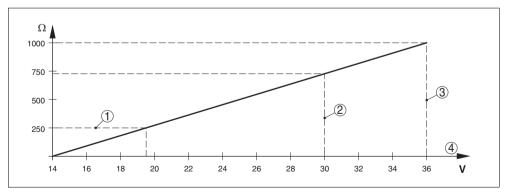


Рис. 29: Диаграмма напряжения

- Нагрузка HART
- Предел напряжения для прибора ЕЕх іа 2
- 3 Предел напряжения для прибора не-Ex/Exd
- Напряжение питания

Защита		
Климатическое исполнение	IP 66/IP 67	
Категория перенапряжений	III	
Класс защиты	II	

Вид взрывозащиты2)

ATEX II 1G, 1/2G, 2G EEx ia IIC T6

ATEX II 1/2G, 2G EEx d ia IIC T6

Применение на судах

²⁾ См. соответствующую документацию.

9.2 Размеры

Корпус

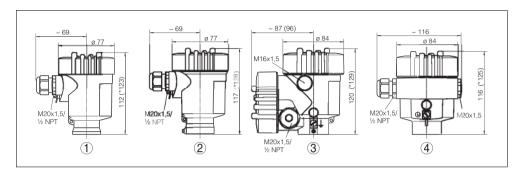


Рис. 30: Варианты корпуса

- 1 Пластиковый корпус (* Размеры с установленным модулем индикации и настройки)
- 2 Корпус из нержавеющей стали (* Размеры с установленным модулем индикации и настройки)
- 3 Алюминиевый двухкамерный корпус (* Размеры с установленным модулем индикации и настройки)
- 4 Алюминиевый корпус (* Размеры с установленным модулем индикации и настройки)

KSR-GT 666 (-20° ... +250°С) в исполнении с тросом/стержнем

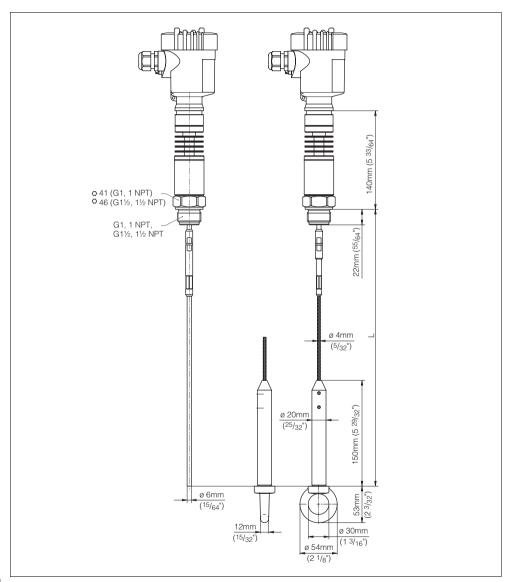


Рис. 31: KSR-GT 666 (-20° ... +250°C) в исполнении с тросом/стержнем и резьбой L = длина датчика, см. Технические данные

KSR-GT 666 (-20° ... +250°C) в исполнении с коаксиальной трубкой

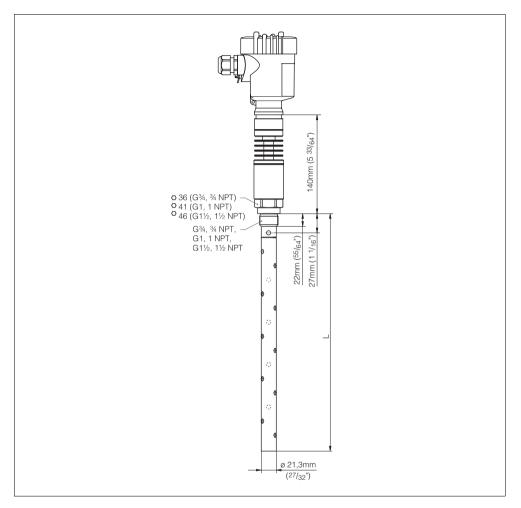


Рис. 32: KSR-GT 666 (-20° ... +250°С) в исполнении с коаксиальной трубкой и резьбой L= длина датчика, см. Технические данные

KSR-GT 666 (-200° ... +400°С) в исполнении с тросом/стержнем

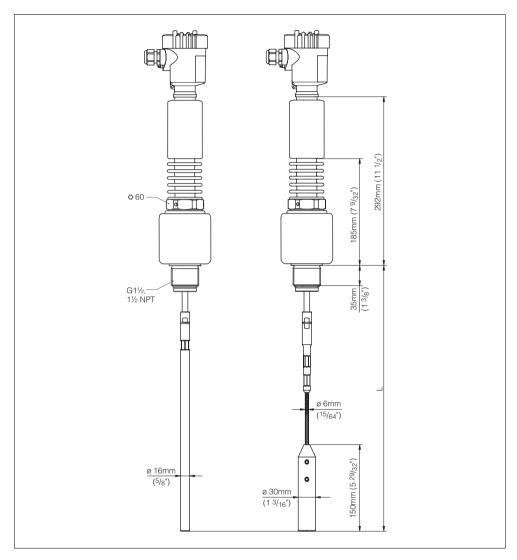


Рис. 33: KSR-GT 666 (-200° ... +400°С) в исполнении с тросом/стержнем и резьбой L = длина датчика, см. Технические данные

KSR-GT 666 (-200° ... +400°С) в исполнении с коаксиальной трубкой

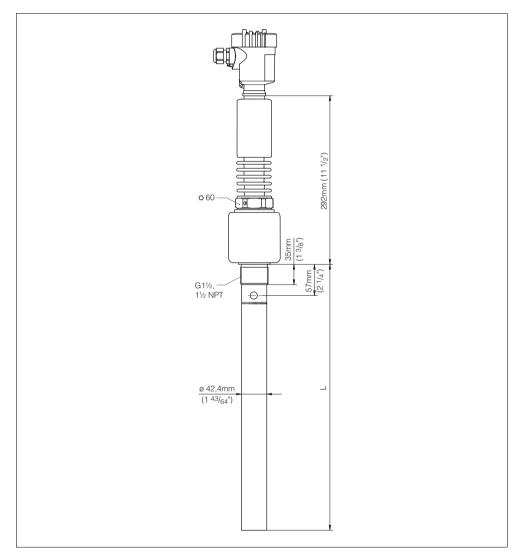


Рис. 34: KSR-GT 666 (-200° ... +400°С) в исполнении с коаксиальной трубкой и резьбой L = длина датчика, см. Технические данные

9.3 Сертификаты

Заявление о соответствии СЕ

ϵ

Konformitätserklärung

Declaration of conformity Déclaration de conformité

erklärt in alleiniger Verantwortung, daß das Produkt / declare under our sole responsibility that our product / déclare sous sa seule responsabilité que le produit

KSR-GT 611, KSR-GT 622, KSR-GT 655, KSR-GT 666

auf das sich diese Erklärung bezieht, mit den folgenden Normen übereinstimmt / to which this declaration relates is in conformity with the following standards / auquel se réfère cette déclaration est conforme aux normes

Emission / Emission → EN 61326 : 2004 Klasse B
Immission / Susceptibility / Immission → EN 61326 : 2004 einschließlich Anhang A
EN 61010 − 1 : 2001

gemäß den Bestimmungen der Richtlinien / following the provision of Directives / conformément aux dispositions des Directives

73/23 EWG 89/336 EWG

Schiltach, 08.06.2005

Ralph Thomas Kübler Vorstand / Chairman / Président

Рис. 35: Заявление о соответствии СЕ

www.ksr-kuebler.com

KSR KUEBLER Niveau-Messtechnik AG Im Kohlstatterfeld 17 69439 Zwingenberg Germany Phone +49 6263 87-0 Fax +49 6263 8799 E-mail: info@de.ksr-kuebler.com

Вся приведенная здесь информация о комплектности поставки, применении и условиях эксплуатации датчиков и систем обработки сигнала соответствует фактическим данным на момент.