Технические Характеристики

Станция сбора данных DX200

Модели DX204/DX208/DX210/DX220/DX230

Содержание

Сод	ержание	I
1.1	Характеристики входов	1
1.2	Характеристики монитора	3
1.3	Характеристики хранения данных	5
1.4	Характеристики функции сигнализации	9
1.5	Характеристики функций коммуникационной связи	10
1.6	Характеристики дополнительных функций	11
	Реле сигнализационного выхода (/AR1, /AR2, /A3, /A4, /A5):	11 11 12 12 12 12 12 13
1.7	Общие характеристики	15
	Конструкция Стандартные эксплуатационные характеристики	15 16 17 18
1.8	Чертежи в масштабе	
	Настольный вариант	21

ii GS 04L02A01-00R

Входы:

Характеристики входов

Число входов: DX204: четыре канала

DX208: восемь каналов DX210: десять каналов DX220: двадцать каналов DX230: тридцать каналов

DX204, DX208: 125 мс или 250 мс Интервал опроса:

DX210, DX220, DX230: 1 с или 2 с (2 с, если время интегрирования

аналого-цифрового преобразователя установлено на 100 мс) Volt (напряжение постоянного тока), ТС (термопара), RTD (термометр сопротивления), DI (дискретный вход), DC постоянный ток (с

подсоединенным внешним шунтирующим сопротивлением)

Тип входа	Серия	Диапазон измерений		
	20 мВ	-20.00	- 20.00 мВ	
	60 мВ	-60.00	- 60.00 мВ	
	200 мВ	-200.0	- 200.0 мВ	
Volt	2 B	-2.000	- 2.000 B	
	6 B	-6.000	- 6.000 B	
	20 B	-20.00	- 20.00 B	
	50 B	-50.00	- 50.00 B	
	R *1	0.0 - 1760°C	32 - 3200°F	
	S *1	0.0 - 1760°C	32 - 3200°F	
	B *1	0.0 - 1820°C	32 - 3308°F	
	K *1	−200.0 - 1370°C	–328 - 2498°F	
	E *1	-200.0 - 800°C	-328.0 - 1472.0°F	
TC	J * ¹	–200.0 - 1100 ⁰ C	-328.0 - 2012.0°F	
	T *1	-200.0 - 400°C	–328.0 - 752.0°F	
	N *1	0.0 - 1300°C	32 - 2372°F	
	W * ²	0.0 - 2315°C	32 - 4199 ⁰ F	
	L *3	−200.0 - 900°C	–328.0 - 1652.0°F	
	U * ³	-200.0 - 400°C	–328.0 - 752.0°F	
RTD *5	Pt100 *4	–200.0 - 600°C	–328.0 - 1112.0°F	
KID	JPt100 *4	–200.0 - 550°C	-328.0 - 1022.0°F	
	Вход напряжения	OFF : меньше 2.4B		
DI	постоянного тока	ON : больше 2.4B		
	(TTL)			
	Вход контакта	Переключающий ко	онтакт (ON/OFF)	

^{*1} R, S, B, K, E, J, T, N: IEC584-1 (1995), DIN IEC584, JIS C1602-1995

Ток измерений: і = 1 mA

Время интегрирования аналого-цифрового преобразователя:

Выбор между 20 мс (50 Гц), 16.7 мс (60 Гц), 100 мс (50/ 60 Гц для DX210/220/230) или AUTO (автоматический выбор между 20 мс и

16.7 мс через определение частоты питания)

Перегорание термопары: Функция индикации перегорания термопары может включаться/

выключаться (ON/OFF) для каждого канала

Выбирается Burnout upscale/downscale (Индикация перегорания

верхним/ нижним зашкаливанием)

Фильтр: DX204, DX208: Затухание сигнала

> Выбор вкл/выкл (On/off) для каждого канала Постоянная времени: выбор между 2, 5 и 10

секундами

DX210, DX220, DX230:

Скользящее среднее

Выбор вкл/выкл (On/off) для каждого канала Число осредняемых выборок выбирается в

интервале от 2 до 16

^{*2} W: W-5% Rd/W-26% Rd (Hoskins Mfg. Co.), ASTM E988

^{*3} L: Fe-CuNi, DIN43710, U : Cu-CuNi, DIN43710

^{*4} Pt100: JIS C1604-1997, IEC751-1995, DIN IEC751-1996

JPt100: JIS C1604-1989, JIS C1606-1989

Вычисления: Разностные Между двумя любыми каналами

вычисления: Осуществимо для диапазонов Volt, TC, RTD и DI

Линейное Осуществимо для диапазонов Volt, TC, RTD и DI

масштабирование: Пределы масштабирования: —30000 до 30000 Десятичная точка: выбирается пользователем

Единица измерения: определяемая пользователем,

до 6 символов

Квадратный корень: Вычисление квадратного корня и линейное масштабирование

Осуществимо для диапазона Volt

Пределы масштабирования: -30000 до 30000

Десятичная точка: выбирается пользователем Единица измерения: определяемая пользователем,

до 6 символов

1-2 GS 04L02A01-00R

1.2 Характеристики монитора

Блок монитора: 10.4-дюйма жидкокристаллический цветной дисплей с активной

матрицей

Цвета представления ка-

налов:

(VGA с разрешением 480 - 640 точек)

Тренд/гистограммы:

Выбор из 16 цветов: красный, зеленый, синий, индиго, коричневый,

оранжевый, желто-зеленый, голубой, фиолетовый, серый, белый, бирюзовый, темносиний, желтый, светло-серый, пурпурный.

Начальные установки цветов на каналах:

Канал 1: красный, канал 2: зеленый, канал 3: синий, канал 4: индиго,

канал 5: коричневый, канал 6: оранжевый, канал 7: желто-зеленый, канал 8: голубой, канал 9: фиолетовый, канал 10: серый, канал 11: красный, канал 12: зеленый, канал 13: синий, канал 14: индиго,

канал 15: коричневый, канал 16: оранжевый, канал 17: желто-зеленый, канал 18: голубой, канал 19: фиолетовый, канал 20: серый, канал 21: красный, канал 22: зеленый, канал 23: синий, канал 24: индиго,

канал 25: коричневый, канал 26: оранжевый, канал 27: желто-зеленый, канал 28: голубой, канал 29: фиолетовый, канал 30: серый

Фон: Выбор черного или белого

Окно трендов: Направление:

Выбор горизонтального или вертикального

Число представляемых каналов:

10 каналов на окно (максимум)

Представление всех каналов:

60 каналов (максимум, включая каналы вычислений)

Число окон:

4 окна (группа из 4 окон)

Толщина линии:

Выбор:1, 2 или 3 точки

Скорость обновления отображения:

Форма сигнала: (Одно деление включает 30 точек.)

- DX204, DX208: Выбор: 15 с, 30 с, 1, 2, 5, 10, 20, 30 мин., 1, 2, 4, 10 час/дел
- DX210, DX220, DX230: Выбор: 1, 2, 5, 10, 20, 30 мин., 1, 2, 4, 10 час/дел

Численное значение: 1 с (2 с при интервале опроса - 2 с.)

Содержание:

Форма сигнала, численное значение (включение/ выключение, секции отображения чисел), масштаб (отображение масштаба можно включать/ выключать, ON/OFF), линии координатной сетки (число делений выбирается в интервале 4 - 12), часы: минуты на временной оси, линии поиска (ширина линии выбирается равной 1, 2 или 3 точкам), сообщения (до 8 разных сообщений не более 16 символов каждое), индикация сигнализации. Возможно зонное отображение и частично увеличенное отображение.

Окно гистограмм: Направление: Вертикальное или горизонтальное по выбору

Число каналов индикации:

10 каналов на окно (максимум)

 Число окон:
 4 окна (группа из 4 окон)

 Шкалы:
 4 - 12 делений на выбор

Базовая позиция столбца: Слева, справа или в центре (только для

горизонтального отображения)

Скорость обновления отображения: 1 с (2 с при интервале опроса 2 с) Содержание: Гистограмма, численное значение, единица изме-

рения, шкала, индикация сигнализации

Цифровое окно: Число каналов индикации:

10 каналов на окно (максимум)

Число окон: 4 окна (группа из 4 окон)

Скорость обновления отображения: 1 с (2 с при интервале опроса 2 с) Содержание: Численное значение, единица измерения, индикация

сигнализации

Автоматическое переключе-

ние дисплея:

Отображаемая группа может автоматически заменяться на трендо-

вые, цифровые окна и окна гистограмм.

Интервал переключения отображения выбирается между 5 с, 10 с,

20 с, 30 с и 1 мин.

Окно просмотра: Число каналов индикации:

Измеренные значения и состояние сигнализации на

всех каналах

Информационное окно: Обзор сигнализации:

Отображает список сигнализаций. Можно переключать на окно

исторических трендов указанием курсора.

Обзор сообщений:

Отображает список сообщений и время. Можно переключать на

окно исторических трендов указанием курсора.

Обзор памяти:

Отображает список файлов во внутренней памяти. Можно переклю-

чать на окно исторических трендов курсором.

Число символов: 16 символов максимум

Отображает данные, извлекаемые из внутренней или внешней

памяти.

Формат отображения:

Окно отображается полностью или делится на две области (только при отображении исторического тренда данных отобра-

жения)

Действие временной оси:

Может увеличиваться, уменьшаться и прокручиваться

Информации о памяти:

На дисплей выводится следующая информация об извлекаемых

данных:

Имя файла, серийный номер DX, используемый при сборе данных, время запуска и прекращения сбора данных, имя пользователя (при использовании функции регистрации по ключу) и ин-

формация о пакетной обработке (модели с /ВТ1)

Отображение группы из 4

Окно исторических трен-

окон:

Теги:

дов:

ЖК экран разделен на 4 участка. На каждом из них может быть ото-

бражено следующее.

Тренд, числа, столбчатая диаграмма, обзор, сводка действий сигна-

лизации, сводка сообщений и сводка памяти.

Отображение журналов: Отображает журналы сообщений об ошибках, регистрации/ выход по

ключу, команды интерфейса связи и передачи файлов по протоколу

FTP.

Системное окно: Отображает число входных точек, емкость внутренней памяти, оп-

ции, МАС-адрес и номер версии ПЗУ ПО.

Функция хранителя задней подсветки (экономии)

Задняя подсветка ЖКЭ автоматически гаснет, если не нажимать на клавиши заранее заданное время (можно установить 1, 2, 5, 10, 20 и

60 минут).

Язык отображения: Единица измерения Английский немецкий, французский и японский язык на выбор

температуры: Выбор: °С или °F

1-4 GS 04L02A01-00R

1.3 Характеристики хранения данных

Внешний носитель По выбору:

информации: 1) 3.5-дюймовая дискета (2HD, 1.44 Мб)

2) Карта флэш-памяти РСМСІА АТА (4 - 440 Мб)

3) Диск Zip (100 Мб)

Метод сохранения: По выбору ручное или автоматическое сохранение Ручное сохранение: Сохранение на вставленном внешнем носителе

Автоматическое сохранение: Данные отображения:

Периодическое сохранение (10 мин – 31 день) на внешнем но-

сителе

Данные события:

При свободном режиме сбора: Периодическое сохранение (10 мин

- 31 день) на внешнем носителе

При сборе с запуском: Сохранение при завершении сбора.

Интервал выборки: Данные отображения: Расчет по скорости обновления отображения

формы сигнала

Данные события: Интервал выборки задается

Интервал выборки для данных события:

Типы файлов:

Нельзя задать интервал выборки меньше интервала опроса

DX204, DX208:

Выбор из: 125, 250, 500 мс и 1, 2, 5, 10, 30, 60, 120, 300, 600 с

DX210. DX220. DX230:

Выбор из: 1, 2, 5, 10, 30, 60, 120, 300 и 600 с Могут быть созданы следующие два типа файлов:

Могут быть созданы следующие два типа фаилов:

 Файл данных события (сохраняет мгновенные значения, собираемые периодически чрез заданный интервал выборки)

• Файл данных отображения (сохраняет максимальные и минимальные значения для каждого интервала выборки из всех измеренных данных, собранных через интервалы опроса).

Файлы могут создаваться в следующих сочетаниях:

 Файл данных события (только для триггера) + файл данных отображения

Только файл данных отображения

• Только файл события Формат данных: Двоичный Размер данных на канал:

Данные отображения: данные измерений: ... 4байт/эл. Данные

вычислений: 8байт/эл. данных

Данные события: данные измерений: 2б/эл. Данные вычис-

лений: 4байт/эл. данных

Режимы сбора данных события

Длина выборки

Только данные события: выбирается Free, Trigger или Rotate Данные события + данные отображения: выбор из Trigger или Rotate Длина выборки (максимальная длина данных) может быть вычислена по следующему уравнению:

Длина выборки = максимальное число точек данных на канал \times интервал выборки

Максимальное число точек данных на канал: зависит от емкости внутренней памяти, типов данных, размера данных и числа каналов измерений и вычислений сохраняемых данных.

Емкость внутренней памяти

Тип данных	Емкость внутренней памяти		
Только данные отображения	1,2 Мб		
Данные отображения и данные	Данные отображения	0,9Мб	
события	Данные события	0,3 Мб	
Только данные события	1,2 Мб		

Максимальное число сохраняемых точек данных на канал

Тип данных	Максимальное число точек данных на канал
Только данные отображения	1200000 байт/(число каналов измерений × 4 + число каналов
	вычислений × 8)
	Предельное число точек на канал – 100000.
Данные отображения и данные	Данные отображения
события	900000 байт/(число каналов измерений \times 4 + число каналов вычислений \times 8)
	Предельное максимальное число точек данных – 75000.
	Данные события
	300000 байт/(число каналов измерений × 2 + число каналов вычислений × 4)
	Предельное максимальное число точек данных – 30000.
Только данные события	1200000 байт/(число каналов измерений x 2 + число каналов вычислений x 4)
	Предельное максимальное число точек данных – 120000.

Данные логические схемы имеют следующее объяснение:

1) При сборе только данных отображения

Если мы допустим, что число каналов измерений равно 20, число каналов вычислений равно 10, а скорость обновления отображения составляет 30 мин/дел (интервал выборки — 60 сек), тогда Число данных на канал = 1200000 байт/(20×4 байт + 10×8 байт) = 7500 точек данных * Максимальное число точек составляет 100000.

Длина выборки на файл = 7500×60 сек = 450000 сек = примерно 5 дней

2) При сборе только данных события

Если мы допустим, что число каналов измерений равно 20, число каналов вычислений равно 10, а интервал выборки составляет 1 сек, тогда Число данных на канал = 1200000 байт/(20×2 байт + 10×4 байт) = 15000 точек данных *

* Максимальное число точек составляет 120000.

Длина выборки = 15000×1 сек = 15000 сек = примерно 4 часа

3) При сборе как данных отображения, так и данных события Длина выборки рассчитывается при выделении 900000 для данных отображения и 300000 для данных события. Метод вычислений аналогичен представленному выше.

Предельное число точек данных отображения – 75000, а предельное число точек данных события – 30000.

1-6 GS 04L02A01-00R

Пример длины выборки:

Если число каналов измерений = 4, а число каналов вычислений = 0

Только файл данных отображения

(примерно)

Скорость обновления отображения (/дел)	1 мин	5 мин	20 мин	30 мин	60 мин	240 мин
Интервал выборки	2 c	10 c	40 c	60 c	120 c	480 c
Длина выборки	41 час	8 сут	34 сут	52 сут	104 сут	416 сут

Только файл данных события

(примерно)

Интервал выборки	125 мс	500 мс	1 c	5 c	30 c	120 c
Длина выборки	4.2 час	16 час	33 час	6 сут	41 сут	166 сут

Файл данных отображения + файл данных события

Файл данных отображения

(примерно)

Скорость обновления отображения (/дел)	1 мин	5 мин	20 мин	30 мин	60 мин	240 мин
Интервал выборки	2 c	10 c	40 c	60 c	120 c	480 c
Длина выборки	31 час	6 сут	26 сут	39 сут	78 сут	312 сут

Файл данных события					(примерно)
Интервал выборки	125 мс	500 мс	1 c	5 c	30 c	120 c
Длина выборки	1 час	4.2 час	8.3 час	41 час	10 сут	41 сут

Если число каналов измерений = 6, а число каналов вычислений = 0

Только файл данных отображения

(примерно)

(1 -1						
Скорость обновления отображения (/дел)	1 мин	5 мин	20 мин	30 мин	60 мин	240 мин
Интервал выборки	2 c	10 c	40 c	60 c	120 c	480 c
Длина выборки	27 час	5 сут	23 сут	34 сут	69 сут	277 сут

Только файл данных события

(примерно)

Интервал выборки	10 c	5 c	1 c	30 c	60 c	120 c
Длина выборки	11 сут	5 сут	27 час	34 сут	69 сут	138 сут

Файл данных отображения + файл данных события

Файл данных отображения

(примерно)

Скорость обновления отображения (/дел)	1 мин	5 мин	20 мин	30 мин	60 мин	240 мин
Интервал выборки	2 c	10 c	40 c	60 c	120 c	480 c
Длина выборки	20 час	4 сут	17 сут	26 сут	52 сут	208 сут

Файл данных события

(примерно)

Интервал выборки	10 c	5 c	1 c	30 c	60 c	120 c
Длина выборки	2 сут	34 час	6.9 час	8 сут	17 сут	34 сут

Если число каналов измерений = 30, а число каналов вычислений = 0

Только файл данных отображения

(примерно)

Скорость обновления отображения (/дел)	1 мин	5 мин	20 мин	30 мин	60 мин	240 мин
Интервал выборки	2 c	10 c	40 c	60 c	120 c	480 c
Длина выборки	5.6 час	27 час	4 сут	6 сут	13 сут	55 сут

Только файл данных события (примерно) 5 c 60 c 10 c 1 c 30 c 120 c Интервал выборки 27 сут Длина выборки 27 час 5.6 час 6 сут 13 сут 2 сут

Файл данных отображения + файл данных события

Файл данных отображения (примерно) Скорость обновления 30 мин 60 мин 240 мин 1 мин 5 мин 20 мин отображения (/дел) 480 c 2 c 10 c 40 c 60 c 120 c Интервал выборки Длина выборки 4.2 час 20 час 3 сут 5 сут 10 сут 41 сут

Файл данных события					(примерно)
Интервал выборки	10 c	5 c	1 c	30 c	60 c	120 c
Длина выборки	13 час	6.9 час	1.4 час	41 час	3 сут	6 сут

Данные ручной выборки:

Триггер: Действие клавиши, команда коммуникационной связи или внеш-

ние входные сигналы (опция /R1)

Формат данных: **ASCII**

Максимальное число наборов данных во внутренней памяти: 50

Данные TLOG (опция /M1):

Триггер: Тайм-аут таймера

Формат данных: Двоичный

Максимальное число наборов данных во внутренней памяти: 400 наборов данных или

16 файлов (число операций запуска/останова, START/STOP)

Данные отчетов (опция /М1):

Типы: часовые, суточные, часовые + суточные, суточные + месячные и

суточные + недельные

ASCII Формат данных:

Максимальное число наборов данных во внутренней памяти: 40

Данные экранных образов:

Триггер: Действие клавиши, команда коммуникационной связи или внешние

входные сигналы (опция /R1)

Формат данных:

Выход: Внешний носитель информации или коммуникационный интерфейс

1-8 GS 04L02A01-00R

1.4 Характеристики функции сигнализации

Число сигнализаций: До четырех сигнализаций на каждый канал

Типы сигнализации: Верхний и нижний пределы, верхний и нижний пределы задержки,

верхний и нижний пределы разности, верхний и нижний пределы

скорости изменения

Время задержки сигнализации: Выбирается из интервала 1с - 3600с для каждого канала

Приращение времени для сигнализации скорости изменения:

Интервалы опроса для всех каналов составляют 1 – 15 сек

Отображение: Состояние сигнализации (тип) выводится на экран в области числен-

ных значений при срабатывании сигнализации. Общая индикация сигнализации отображается в секции отображения состояний. Для всех каналов может выбираться общий характер изменения индикации сиг-

нализации: удерживаемая и неудерживаемая индикация.

Гистерезис: Включение (0,5% от диапазона отображения)/выключение, On/off

(применимо к сигнализации верхнего/нижнего предела, общей для

всех каналов измерений)

Выходы реле (дополнительные):

Число точек: 2, 4, 6, 12 или 24

Действие реле: Выбор действия под напряжением/при снятии напряжением, с удерживание/без удерживания, И/ИЛИ, повторного замыкания Состояние реле сигнализации сохраняется даже в режиме базовой

установки

Информация о сигнализации: Дата и время срабатывания/снятия срабатывания сигнализации,

типы сигнализации и т.п.

До 120 самых последних сигнализаций сохраняются во внутренней

памяти. Отображается в окне обзора сигнализаций.

1.5 Характеристики функций коммуникационной связи

Cоединение: Ethernet (10BASE-T)

Протоколы: ТСР/ІР

Функции клиента FTP: Автоматическая передача файлов от DX200 (протокол клиента FTP) Функции сервера FTP: Передача файлов по запросу главного компьютера (протокол сервера FTP)

Работа с директориями, вывод файлов и уничтожение файлов на внешнем

носителе информации

Файлы, которые могут передаваться:

Файл данных отображения, файл данных события и файл данных отчетов

Функция контроля в реальном времени:

Контроль данных измерений/вычислений на DX200.

Используется частный протокол YOKOGAWA.

Функция передачи E-mail (электронной почты):

Послания E-mail автоматически передаются в следующих случаях. Срабатывание/ снятие срабатывания сигнализации, восстановление подачи питания, заполнение памяти, возникновение ошибок, связанных с внешним носителем информации и клиентом FTP, в заданное время и при создании отчетов.

Адресаты: Задаются две группы адресатов назначения.

Функция сервера глобальной сети:

Отображает окно DX200 в броузере Internet Explorer.

- Броузер: Microsoft Internet Explorer, версии 4.0 5.5
- Окно контроля «Monitor»
- Окно оператора «Operator»: Окно временного выхода из броузера для написания и изменения сообщений
- Устанавливает контроль доступа (имя пользователя и пароль) для каждого окна.

1.6 Характеристики дополнительных функций

Реле сигнализационного выхода (/AR1, /AR2, /A3, /A4, /A5):

Сигнализации выводится с задней панели, как сигнал контакта реле.

/AR1 и /AR2 включают функции внешнего управления (/R1) Максимально допустимая мощность переключения реле:

~250В (50/60 Гц)/3 А, -250В/0.1 А (для активной нагрузки)

Конструкция выхода: Однополюсный переключатель на два направления (н/о-к-н/з). Выбор: под

напряжением/ при снятии напряжением при срабатывании сигнализации, И/ИЛИ, с удерживанием/ без удерживания и повторного замыкания.

Функция пакетной обработки (/ВТ1):

Информация, добавляемая к данным измерений/вычислений:

Серийный номер DX200, наименование объекта, имя диспетчера, имя руководителя, номер пакетной обработки, номер партии, комментарии

Отображаемая информация:

Выводит на экран наименование объекта, имя диспетчера, имя руководителя, номер пакетной обработки и комментарий при прекращении сбо-

ра данных во внутреннюю память.

Идентификация операторов (пользователей) с помощью функции регистрации по ключу:

Нельзя задавать имена пользователей, которые уже зарегистрированы, а также сочетания идентификаторов пользователей и паролей, аналогичных зарегистрированным любым пользователем в прошлом.

Сообщения 1 - 3 могут изменяться в рабочем режиме.

Сообщения: Сообщения Подтверждение сохраняемых данных:

Информация о пакетной обработке может быть отображена в информа-

ционном окне памяти.

Последовательный коммуникационный интерфейс (/С2, /С3):

Данный интерфейс позволяет главному компьютеру управлять и вводить уставки для DX200, также

как и получать данные от DX200.

Соединение: EIA RS-232 (/C2) или RS-422-A/485 (/C3)

Протоколы: Частный протокол YOKOGAWA, протокол Modbus

Метод синхронизации: Старт-стоповая асинхронная передача

Способ соединения (RS-422-A/485):

4-проводная полудуплексная многоабонентская линия связи

(1: N, где N = 1 - 31)

Скорость передачи: 1200, 2400, 4800, 9600, 19200 или 38400 бод

Длина данных: 7 или 8 бит Стоповый бит: 1 бит

Контроль по четности: Нечет, чет или отсутствует Протяженность линии связи (RS-422-A/485): До 1200 м

Формат связи: ASCII для ввода/вывода при управлении и установке ASCII или двоичный для вывода данных измерений

Modbus: Режим: RTU SLAVE, RTU MASTER

Тип данных: SLAVE (подчиненные): данные считываются и записываются

главным устройством

MASTER (главные): Данные считываются и записываются с подчи-

ненного устройства (необходима функция вычислений /М1)

Проводка: 4 провода (для RS-422-A/485)

Коммуникационный интерфейс Fieldbus (/CF1)

Двусторонняя цифровая связь с полевыми устройствами и станциями DCS, подсоединенными по многоабонентской схеме в соответствии со стандартом FOUNDATION Fieldbus, определенным компанией Fieldbus Foundation.

Интерфейс: FOUNDATION Fieldbus H1 (скорость передачи: 31.25 кбод)

Тип физического уровня: 113 (стандартная сигнализация питания, шина под напряжением, не

стандарта I.S.)

Внешний источник питания: Напряжение питания: -9 – 32В

Ток питания: 16.5 мА (максимум) Соединение: Винты М4 (2 клеммы)

Электрическая прочность: Выдерживает эффективное напряжение 500В (50/60 Гц) в течение 1

минуты между коммуникационной клеммой и клеммой заземления

Функциональная характеристика: Функциональный блок:

8 функциональных блоков АІ (передача данных измерений / вычисле-

ний другим приборам, 1 канал на блок)

1 функциональный блок МАІ (передача данных измерений / вычисле-

ний другим приборам, до 8 каналов)

1 функциональный блок МАО (получение данных измерений / вычислений и других данных от других приборов и запись или отображение

этих данных, до 8 каналов) Функция мастера связи

Иное: Необходима функция вычислений /М1

Выход VGA (/D5):

Окно DX200 может выводиться на экран монитора через клемму. Может использоваться только

монитор VGA или мультисинхронный монитор, работающий по стандарту VGA.

Разрешение: 640 X 480 точек (VGA)

Выход ошибки/заполнения памяти (/F1):

Выход контакта реле на задней панели сигнализирует о возникновении системной ошибки. Другой контакт реле уведомляет за определенное время о заполнении внутренней памяти (выбор из 1, 2, 5, 10, 20, 50 или 100 часов) прежде, чем данные будут перезаписываться, или срабатывает в момент, когда на внешнем носителе информации остается 10% неиспользованной емкости.

Реле: Питание отключается при системной ошибке

Питание подается при недостатке памяти

Характеристика контакта: -250В/0.1 А (активная нагрузка), ~250В (50/60 Гц)/3 А

Входной зажим (/Н2):

Входной зажим работает как вход.

Настольное исполнение (/Н5[]):

Имеет ручку для переноса. Силовой шнур имеется, если задана опция /H5D, /H5F/, H5R или /H5J.

Функции вычислений (/М1):

Выполняют вычисления, выводят на экран данные вычислений, присвоенные каналам, в трендах и численных значениях и сохраняют данные вычислений.

Каналы, присваиваемые данным вычислений:

DX204, DX208: До 8 каналов DX210, DX220, DX230: До 30 каналов

Действие: Общие арифметические операции:

НЕ, исключающее ИЛИ)

1-12 GS 04L02A01-00R

Статистические операции: Среднее, максимум, минимум, суммирование

и максимум – минимум

Специальные операции: Скользящее среднее (среднее значение резуль-

татов вычислений)

Постоянные: Имеются (до 30 констант)

Цифровые входные данные, поступающие по коммуникационной связи:

Цифровые данные, поступающие по коммуникационной связи, могут ис-

пользоваться в расчетных выражениях (до 30 элементов данных)

Состояние внешнего входа: Состояние внешнего входа (0/1) можно использовать в расчетных

выражениях (до 8 входов)

Функции отчетов: Тип отчета: часовой, суточный, часовой + суточный, суточный +

месячный и суточный + недельный

Операции: Среднее, максимум, минимум и суммирование

Формат данных: ASCII

Вход термометра сопротивления Cu10, Cu25 /3-клеммный изолированный вход термометра сопротивления (/N1):

Эта опция дает возможность добавить входы Cu10, Cu25 к стандартным типам входов. Клеммы A,B,b являются изолированными входами для DX210, DX220 и DX230.

Тип входа		Диапазон измерений
Термометр сопротивление (ток измерений: i = 1.25мA)	Cu10 (GE) Cu10 (L&N) Cu10 (WEED) Cu10 (BAILEY) Cu10: ∞ = 0.00392 при 20°C Cu10: ∞ = 0.00393 при 20°C Cu25: ∞ = 0.00425 при 0°C	–200 - 300 ⁰ C (–328.0 - 572.0 ⁰ F)

Точность измерений

Тип входа	Тип входа Диапазон измерений с установленной погрешностью	
Cu10 (GE)	−70 - 170°C	
Cu10 (L&N)	−75 - 150°C	
Cu10 (WEED)	–200 - 260 ⁰ C	± (0.4% показания + 1.0°С)
Cu10 (BAILEY)		± (0.4% показания + 1.0 С)
Cu10: $\infty = 0.00392$ при 20° C	−200 - 300°C	
Cu10: ∞ = 0.00393 при 20°C	200 000 0	
Cu25: ∞ = 0.00425 при 0°C		± (0.3% показания + 0.8°C)
Pt100	Диапазон измерений	± (0.3% показания + 0.6°C)
Jpt100	дианазон измерении	± (0.070 Hokasarivia + 0.0 G)

3-клеммный изолированный вход термометра сопротивления (/N2):

Клеммы А, В, b относятся к типу изолированных входов.

Клеммы A,B,b DX204 и DX208 изолированы как стандартные входы.

Питание от источника постоянного/переменного тока, 24 В (/Р1):

Питание от источника ~24B (VDC) или- -24B. (VAC)

Номинальное напряжение питания: 24В переменного/постоянного тока

Диапазон допустимого напряжения питания: 21.6 - 26.4В постоянного/переменного тока

Диэлектрическая прочность: Напряжение на клемму заземления: ~500В (50/60 Гц),

1 минута

Номинальная частота тока питания: 50/60 Гц Диапазон допустимой частоты тока питания: 50/60 Гц±2%

^{*} Может быть задан только для DX210, DX220 и DX230.

Номинальное энергопотребление:

54 ВА (для постоянного тока), 76 ВА (для переменного тока)

Энергопотребление:

Напряжение питания	Режим сохранения задней подсветки	Нормальное	Максимальное
-24B	34BA	35BA	54BA
~24В (50/60Гц)	50BA	53BA	76BA

Влияние на величину измерений:

При изменении в пределах 21.6 - 26.4 В (50/60 Гц):

±1 цифра или меньше

При колебаниях ±2 Гц от номинальной частоты питания (при напряжении ~24B):

 $\pm (0.1\%$ показания + 1 цифра) или меньше

Внешнее управление (/R1):

Данная опция позволяет управлять дистанционно следующими функциями с использованием контакта или разомкнутого коллекторного входа (до 8 входов):

- Квитирование действий сигнализации (триггер, 250 мс или больше)
- Запуск/ останов сбора данных (нарастающий и затухающий перепад сигнала)
- Триггер сбора данных события (триггер, 250 мс или больше)
- Настройка времени (настройка встроенных часов на ближайший час по внешнему сигналу, триггеру, 250 мс или больше)

Время ввода сигнала	Обработка
hh:00:00 - hh:01:59	Отсечка секундных показаний.
	Например, 10:00:50 преобразуется в 10:00:00
hh:58:00 - hh:59:59	Округление секундных показаний. Например, 10:59:50 преобразуется в 11:00:00
hh:02:00 - hh:57:59	Не выполняется

- Запуск/ остановка вычислений (нарастающий и затухающий перепад сигнала, опция /М1)
- Переустановка данных вычислений (триггер, 250 мс или больше, опция /М1)
- Ручная выборка (триггер, 250 мс или больше)
- Запись сообщений (до 8 различных сообщений может быть установлено, триггер, 250 мс или больше)
- Загрузка параметров установки (до 3 файлов данных установки может быть установлено, триггер, 250 мс или больше)
- Копия экрана (сохраняется текущий экранный образ на внешний носитель информации)

Источник постоянного тока, 24B, датчика (/TPS4 или /TPS8)

Число контуров: 4 (/TPS4) или 8 (/TPS8)

Выходное напряжение: 22.8 - 25.2В (при номинальном постоянном токе на выходе)

Номинальный выходной ток: 4 - 20 мА (постоянный)

Максимальный выходной ток: 25 мА, постоянный (ток действия защиты от сверх токов: примерно 68 мА,

постоянный)

Допустимое сопротивление кабеля: RL ≤ (17.8 – мин. рабочее напряжение датчика)/0.02 A

где 17.8B = 22.8B - 5B

22.8В: минимальное выходное напряжение

5В: макс. напряжение на активной нагрузке (250Ом.)

Максимальная длина кабеля: 2 км (при использовании кабеля CEV)

Сопротивление изоляции: 20 Мом или больше (500В постоянного тока) между выходной клеммой и

клеммой заземления

Выдерживаемое напряжение: 500В переменного тока (50/60 Гц, I = 10 мА) в течение 1 минуты между

выходной клеммой и клеммой заземления).

500В переменного тока (50/60 Гц, I = 10 мА) в течение 1 минуты меж-

ду выходными клеммам.

1-14 GS 04L02A01-00R

1.7 Общие характеристики

Конструкция

Установка: Монтаж на плоской панели (на вертикальной плоскости)

Монтажная позиция может отклоняться до 30 градусов от горизонталь-

ной плоскости.

Допустимая толщина панели:

2 - 26 мм

Материал: Корпус: тянутая сталь

Держатель: поликарбонат

Цвет корпуса: Корпус: Серовато-голубой зеленый (Munsell 2.0B 5.0/1.7 или

равноценный)

Держатель: Угольный светло-серый (Munsell 10B 3.6/0.3 или равноценный) Передняя панель: Водо-, пыленепроницаемая (в соответствии с IEC529-IP65 и NEMA

No.250 TYPE4 (исключая тест внешнего обледенения))

Размеры: 288(Ш) X 288(B) X 247.1(Д) мм

Bec: DX204: примерно 6.6 кг

DX208: примерно 6.8 кг DX210: примерно 6.6 кг DX220: примерно 6.9 кг DX230: примерно 7.3 кг

Стандартные эксплуатационные характеристики

Погрешность измерений:

Следующие характеристики применимы к эксплуатации DX200 в стан-

дартных рабочих условиях: Температура: 23 ± 2^{0} C Влажность: $55\% \pm 10\%$ RH

Напряжение питания: 90 - 132 или 180 - 250 В переменного тока

Частота питания: $50/60 \Gamma \mu \pm 1\%$ Время прогрева: не менее 30 минут

Другие условия окружающей среды как, например, вибрация, не должны

влиять на работу DX200.

Вход	Серия	Погрешность измерений (цифровой дисплей)	Макс. разрешение цифрового дисплея
	20 мВ		10 μВ (мкВ)
Напряжение	60 мВ		10 μB
	200 мВ	± (0.1% показания + 2 цифры)	100 μB
постоянного	2 B	± (0.1 /6 Показания + 2 цифры)	1 мВ
тока	6 B		10 мВ
	20 B		10 мВ
	50 B	± (0.1% показания + 3 цифры)	
	R	± (0.15% показания + 1 ⁰ C)	
	S	Однако, R, S : ± 3.7°C при 0 - 100°C, ± 1.5°C при 100 ÷ 300°C	
Термопара	В	В: $\pm 2^{\circ}$ С при 400 ÷ 600°С (Точность ниже 400°С не гарантируется.)	
(ТС) (без погрешности	К	\pm (0.15% показания + 0.7°C) Но \pm (0.15% показания + 1°C) при $-200 \div -100$ °C	
компенсации свободного	E	± (0.15% показания + 0.5°C)	0.1 ^o C
спая)	J	± (0.15% показания + 0.5°C)	
CHAN)	T	Ho ± (0.15% показания + 0.7°С) при –200 ÷ −100°С	
	N	± (0.15% показания + 0.7°C)	
	W	± (0.15% показания + 1°C)	
	L	± (0.15% показания + 0.5°C)	
	U	Ho ± (0.15% показания + 0.7°С) при −200 ÷ −100°С	
Термометр	Pt100		
сопротивле- ние	JPt100	± (0.15% показания + 0.3°C)	

Погрешность измерений при масштабировании (под цифры шкалы):

Погрешность при масштабировании (цифры) =

Погрешность измерений (цифры) × множитель + 2 цифры (округление),

Где множитель = диапазон масштабирования (цифры)/диапазон измерений (цифры).

Пример: Допустим, что

Диапазон:
 6 В

Диапазон измерений: 1.000 - 5.000 ВДиапазон масштабирования: 0.000 - 2.000

Гогда.

Погрешность измерений = $\pm (0.1\% . 5 B + 2 цифры)$

 $= \pm (0.005 B [5 цифр] + 2)$

 $= \pm (7 цифр)$

Множитель = 2000 цифр (0.000 - 2.000)/4000 цифр (1.000 - 5.000 В) = 0.5

Погрешность при масштабировании = 7 цифр X 0.5 + 2 = 6 цифр (округление)

Компенсация свободного спая:

Внутренняя/внешняя выбирается для каждого канала

Погрешность компенсации свободного спая (свыше 0°C):

Типы R, S, B, W: ±1⁰C

Типы K, J, E, T, N, L, U: ±0.5°C

Максимально допустимое входное напряжение:

±10 V (постоянное) для амплитуд от 2В и меньше и амплитуд ТС

±60 V (постоянное) для амплитуд -6B, -20B и -50B

Входное сопротивление:

Примерно 10 МОм и больше для амплитуд от -2В и меньше и ТС

Примерно 1 МОм для амплитуд -6В, -20В и -50В

Входное внутреннее сопротивление источника:

Volt, TC: 2 кОм и меньше

RTD: 10Ом и меньше на провод (сопротивление всех трех проводов

должно быть равным)

Входной ток смещения: 10 нА и меньше

Максимальное напряжение помех общего вида:

~250 В (эффективное) (50/60 Гц)

Максимальное шумовое напряжение между каналами:

~250 В (эффективное) (50/60 Гц)

Взаимное воздействие каналов:

120 дБ (при сопротивлении входного источника 500Ом и входных сигна-

лах на другие каналы – 60В).

Коэффициент подавления помех общего вида:

120 дБ (50/60 Гц ±0.1%, 500Ом дисбаланс, между клеммой отрицатель-

ного полюса и землей)

Коэффициент подавления помех нормального вида:

40 дБ (50/60 Гц ±0.1%)

Энергопитание

Номинальные параметры энергопитания:

~100 - ~240 В (автоматическое переключение, исключая модель /Р1)

~/-24 В (модель /Р1)

Допустимый диапазон напряжения питания:

~90 - ~132 или ~180 - ~264 В (исключая модель /Р1)

~/-21.6 - ~/-26.4 В (модель /Р1)

Номинальная частота питания:

50/60 Гц (автоматическое переключение, для переменного тока)

Номинальное энергопотребление:

106 ВА (исключая модель /Р1)

54 ВА (модель /Р1, постоянный ток), 76 ВА (/Р1, переменный ток)

1-16 GS 04L02A01-00R

Энергопотребление:

Исключая модель /Р1

Напряжение питания	Режим сохранения задней подсветки	Нормальное	Максимальное
~100 B	50 BA	50 BA	75 BA
~240 B	78 BA	80 BA	106 BA

Модель /Р1

Напряжение питания	Режим сохранения задней подсветки	Нормальное	Максимальное
-24 B	34 BA	35 BA	54 BA
~24 В (50/60 Гц)	50 BA	53 BA	76 BA

Нормальные рабочие условия

Напряжение питания: ~90 - ~132 или ~180 - ~250 В (исключая модель /P1)

~/-21.6 - ~/-26.4 В (модель /Р1)

Частота питания:

Вибрация:

Температура окружающей среды:

 $0 - 50^{\circ}$ С (при использовании дисководов гибких дисков или дисков Zip: $5 - 40^{\circ}$ C)

Относительная влажность окружающей среды:

20% - 80% (при 5 - 40° C) 10 - 60 Гц, 0.2 м/с 2 и меньше

Удар: Недопустимо

Магнитное поле: 400 А/м и меньше (постоянный ток и переменный, 50/60 Гц)

Помехи: Нормального вида (50/60 Гц):

Volt: Амплитуда вместе с сигналом не должна превышать более чем в

1,2 раза диапазон измерений.

ТС: Амплитуда вместе с сигналом не должна превышать более чем в

1,2 раза диапазон измерений.

RTD: не более 50 мВ

Помехи общего вида (50/60 Гц):

~250 В (эффективное напряжение) и меньше для всех диапазонов

Максимальные помехи между каналами (50/60 Гц):

~250 В (эффективное напряжение) или меньше

Монтажная позиция: Может отклоняться до 30 градусов назад. Установка под углом к перпен-

дикуляру недопустима.

Время прогрева: По меньшей мере, 30 минут после включения питания

Высота: Не более 2000 м над уровнем моря

Влияние рабочих условий

Температура окружающей среды:

При изменении температуры на 10⁰C:

±(0.1% показания + 1 цифра) или меньше для Volt и TC

Без ошибки компенсации свободного спая

±(0.1% показания + 2 цифры) или меньше для RTD

Энергопитание: Для всех моделей, кроме /Р1

При изменении в пределах 90 - 132 В и ~180 - ~250 В (50/60 Гц): ±1 цифра

или меньше

При колебаниях ±2 Гц от номинальной частоты (при ~100 В): ±(0.1%

показания + 1 цифра) или меньше

Для модели /Р1

При изменении в пределах ~/-21.6 - 26.4 В: ±1 цифра или меньше При колебаниях ±2 Гц от номинальной частоты (при ~24 В): ±(0.1%

показания + 1 цифра) или меньше

Магнитное поле: Переменного тока (50/60 Гц) и постоянного тока, 400 А/м:

±(0.1% показания + 10 цифр) или меньше

Входное сопротивление источника:

Вход Volt

При изменении на +1 kOм:

. Амплитуды не более 2В: в пределах ±10 µВ

Амплитуды не менее 6В: -0.1% показания или меньше

Вход ТС

При изменении на +1 kOм:

В пределах $\pm 10~\mu$ В (100 μ В при включенной функции верхнего/ нижнего зашкаливания при повреждении термопары)

Bход RTD (Pt100)

При изменении на 10 Ом на провод (сопротивлении всех трех прово-

дов должно быть равным):

±(0.1% показания + 1 цифра) или меньше

При максимальной разнице 40 мОм между проводами:

примерно 0.1°C

Условия транспортировки и хранения

Ниже определены условия окружающей среды, которые должны выдерживаться в процессе транспортировки от отгрузки до начала эксплуатации и в процесс хранения, а также при транспортировке и хранении в случае временного снятия DX200 с эксплуатации.

В этих условиях не происходит сбоя в работе с серьезными повреждениями, которые невозможно устранить при ремонте, однако, чтобы восстановить нормальные эксплуатационные качества прибора, может понадобиться провести его калибровку.

Температура окружающей среды:

-25°C - 60°C

Относительная влажность: 5% - 95% (конденсат недопустим).

Вибрация: $10 - 60 \Gamma \mu$, $4.9 \text{ м/c}^2 \text{ максимум}$ Удар: $392 \text{ м/c}^2 \text{ максимум}$ (при упаковке)

Другие характеристики

Часы: С функцией календаря (текущего года)

Время можно настроить через внешний контакт (в модели с опцией

внешнего управления).

Переход на зимнее время: Может устанавливаться зимнее и летнее время.

Погрешность часов: ±100 млн⁻¹, исключая запаздывание (1 секунда, максимум), вызываемая

каждым включение питания.

Резервирование памяти: Встроенная литиевая батарейка поддерживает установочные парамет-

ры (срок службы батарейки: примерно десять лет при комнатной тем-

пературе).

Функция блокировки клавиатуры:

Можно установить включение/ выключение (ON/OFF) данной функции и

пароль.

Функция регистрации по ключу:

Включается при выходе из системы, блокируя основные операции. Чтобы перейти в рабочий режим, необходимо ввести «User name» (имя пользователя), «User ID» (идентификатор пользователя) и «password»

(пароль).

Сопротивление изоляции: Между каждой клеммой и клеммой заземления: не менее 20МОм (при

500В постоянного тока)

1-18 GS 04L02A01-00R

Диэлектрическая прочность: между источником питания и клеммой заземления:

~1500 В (50/60 Гц), 1 минута (исключая модель /Р1)

между источником питания и клеммой заземления:

~500 В (50/60 Гц), 1 минута (модель /Р1) между контактом выхода и клеммой заземления:

~1500 В (50/60 Гц), 1 минута

между клеммой входа измерений и клеммой заземления:

~1500 В (50/60 Гц), 1 минута

между входными клеммами измерений:

~1000 B (50/60 Гц), 1 минута (исключая b-клемму входа RTD при-

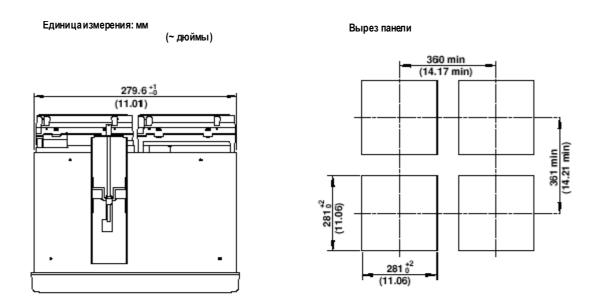
боров DX210, DX220 и DX230)

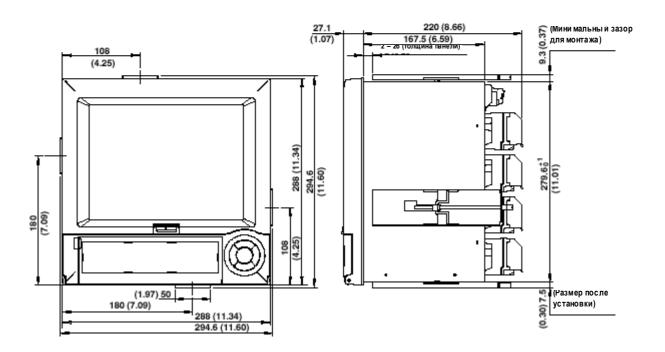
между клеммой внешнего управления и клеммой заземления:

-500 В, 1 минута

Стандарты безопасности и электромагнитной совместимости

Стандарты безопасности: Сертификат CSA22.2 No. 1010.1 и UL3111-1 (CSA NRTL/C)

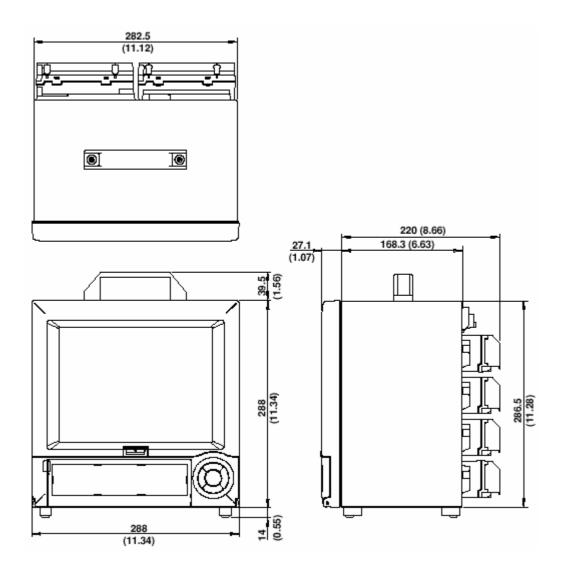

> Соответствует EN61010-1 Категория перенапряжения II $^{\star 1}$ Степень загрязненности 2 *2


- *1 «Категория перенапряжения» описывает число, которое определяет состояние перенапряжения при переходном режиме. Представляет собой норму выдерживаемого напряжения импульса. «II» применимо к электрическому оборудованию, питаемому от распределительных щитов.
- *2 «Степень загрязненности» описывает степень присутствия твердых, жидких и газообразных веществ, ухудшающих электрическую прочность и поверхностное удельное сопротивление. «2» применимо к нормальной комнатной атмосфере. Обычно возникает только загрязнение с низкой проводимостью.

Стандарты электромагнитной совместимости:

Соответствует EN61326-1

1.8 Чертежи в масштабе



Замечание

- При монтаже на панели используйте два кронштейна, один сверху, другой снизу DX200 или один слева, а другой справа.
- Допуск на размер составляет $\pm 2\%$, если не указано иначе. (Однако на размеры меньше 10 мм допуск составляет ± 0.3 мм.)

Настольный вариант

Замечание

Допуск на размер составляет $\pm 2\%$, если не указано иначе. (Однако на размеры меньше 10 мм допуск составляет ± 0.3 мм.)

1-22 GS 04L02A01-00R

КОРПОРАЦИЯ YOKOGAWA ELECTRIC

Центральный офис

2-9-32, Nakacho, Musashino-shi, Tokyo, 180-8750 JAPAN (Япония)

Офис в Токио

Shinjuku Center Bidg. (50F)

1-25-1, Nishi-shinjuku, Shinju-ku, Tokyo, 163-06 JAPAN (Япония) Факс 81-3-3348-3705

Телекс: J27584 YEWTOK

Торговые филиалы

Нагоя, Осака, Хиросима, Фукуока, Саппоро, Сендай, Ичихара, Тойода, Каназава, Такамацу, Окаяма и Китакюсю.

Зарубежные представительства и сервисные центры

Бейджинг, Шанхай (Китайская Народная Республика), Джакарта (Индонезия) Куала Лумпур (Малазия), Бангкок (Таиланд)

КОРПОРАЦИЯ YOKOGAWA CORPORATION OF AMERICA

Центральный офис

2 Dart Road, Newnan, Ga. 30265-1094, U.S.A. (CIIIA)

Телефон: 1-770-253-7000 Факс: 1-770-251-2088[

Торговые филиалы

Чэгрии-Фоллс, Элк-Гроув-Виллидж, Санта-Фе-Спрингс, Хоуп-Вэлли, Колорадо, Хьюстон, Сан Хосе

КОРПОРАЦИЯ YOKOGAWA INDUSTRIAL AUTOMATION AMERICA, INC

Центральный офис

4 Dart Road, Newnan, Ga. 30265-1040, U.S.A. (США) Телефон: 1-770-254-0400

Факс: 1-770-254-0928[

Торговые филиалы

Аврора, Норфолк, Парамузм, Филадельфия, Бартлесвилл, Релей, Исаак, Хьюстон

КОРПОРАЦИЯ YOKOGAWA EUROPE B.V.

Центральный офис Radiumweg 30, 3812 RA Amersfoort, NETHERLANDS (Нидерланды)

Телефон: 31-334-641611 Факс 31-334-641610

Торговые филиалы

Маарсен (Нидерланды), Вена (Австрия), Завентем (Бельгия), Ратинген (Германия), Мадрид (Испания), Братислава (Словакия), Ранкорн (Соединенное Королевство), Милан (Италия)

КОМПАНИЯ YOKOGAWA ELECTRICA DO BRASIL IND. E COM. LTDA.

Praca Acapuico, No.31 Parque Industrial Jurubatula CEP 04675-190 Santo Amaro, Sao Paulo, SP BRAZIL (Бразилия) Телефон: 55-11-548-2666 Телекс 38-1157755 YOKO BR

Факс 55-11-522-5231

КОМПАНИЯ YOKOGAWA ELECTRIC ASIA PTE. LTD.

Пентральный офис

Teлефон: 65-783-9537 Факс 65-786-2606

КОМПАНИЯ HANKUK YOKOGAWA ELECTRIC CO., LTD.

Центральный офис K.P.O. Box: 1481, Korean Reinsurance Bldg.2F, 80 Susong-Dong, Chongro-ku, Seoul, KOREA (Южная Корея)

Телефон: 82-2-3701-0630 / 0650 Факс 82-2-739-3987

КОМПАНИЯ YOKOGAWA AUSTRALIA PTY. LTD.

Центральный офис (Сидней)

Private mail bag 24, Centre Court D3, 25-27 Paul Street North, North Ryde, N.S.W.2113, AUSTRALIA (Австралия)

Телефон: 61-2-9805-0699 Факс: 61-2-9888-1844

КОМПАНИЯ VOKOGAWA BLUE STAR LTD.

Центральный офис

40/4 Lavelle Road Bangalore 560 001, INDIA (Индия)

Телефон: 91-80-2271513 Факс: 91-80-2274270

Телекс 81-8458702 YBCO IN

КОМПАНИЯ YOKOGAWA CONTROLE BAILEY S.A.

Veilizy Valley 18-20, Rue Grange Dame Rose 78140, VELIZY VILLACOUBLAY, FRANCE (Франция) Телефон: 33-1-39-26-1000 Факс 33-1-39-26-1030